146 research outputs found
Fixation prediction with a combined model of bottom-up saliency and vanishing point
By predicting where humans look in natural scenes, we can understand how they
perceive complex natural scenes and prioritize information for further
high-level visual processing. Several models have been proposed for this
purpose, yet there is a gap between best existing saliency models and human
performance. While many researchers have developed purely computational models
for fixation prediction, less attempts have been made to discover cognitive
factors that guide gaze. Here, we study the effect of a particular type of
scene structural information, known as the vanishing point, and show that human
gaze is attracted to the vanishing point regions. We record eye movements of 10
observers over 532 images, out of which 319 have vanishing points. We then
construct a combined model of traditional saliency and a vanishing point
channel and show that our model outperforms state of the art saliency models
using three scores on our dataset.Comment: arXiv admin note: text overlap with arXiv:1512.0172
Learning Spatial-Aware Regressions for Visual Tracking
In this paper, we analyze the spatial information of deep features, and
propose two complementary regressions for robust visual tracking. First, we
propose a kernelized ridge regression model wherein the kernel value is defined
as the weighted sum of similarity scores of all pairs of patches between two
samples. We show that this model can be formulated as a neural network and thus
can be efficiently solved. Second, we propose a fully convolutional neural
network with spatially regularized kernels, through which the filter kernel
corresponding to each output channel is forced to focus on a specific region of
the target. Distance transform pooling is further exploited to determine the
effectiveness of each output channel of the convolution layer. The outputs from
the kernelized ridge regression model and the fully convolutional neural
network are combined to obtain the ultimate response. Experimental results on
two benchmark datasets validate the effectiveness of the proposed method.Comment: To appear in CVPR201
- …