313 research outputs found
Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles
Abstract Aspergillus is one of the economically most important fungal genera. Recently, the ICN adopted the single name nomenclature which has forced mycologists to choose one name for fungi (e.g. Aspergillus, Fusarium, Penicillium, etc.). Previously two proposals for the single name nomenclature in Aspergillus were presented: one attributes the name “Aspergillus” to clades comprising seven different teleomorphic names, by supporting the monophyly of this genus; the other proposes that Aspergillus is a non-monophyletic genus, by preserving the Aspergillus name only to species belonging to subgenus Circumdati and maintaining the sexual names in the other clades. The aim of our study was to test the monophyly of Aspergilli by two independent phylogenetic analyses using a multilocus phylogenetic approach. One test was run on the publicly available coding regions of six genes (RPB1, RPB2, Tsr1, Cct8, BenA, CaM), using 96 species of Penicillium, Aspergillus and related taxa. Bayesian (MrBayes) and Ultrafast Maximum Likelihood (IQ-Tree) and Rapid Maximum Likelihood (RaxML) analyses gave the same conclusion highly supporting the monophyly of Aspergillus. The other analyses were also performed by using publicly available data of the coding sequences of nine loci (18S rRNA, 5,8S rRNA, 28S rRNA (D1-D2), RPB1, RPB2, CaM, BenA, Tsr1, Cct8) of 204 different species. Both Bayesian (MrBayes) and Maximum Likelihood (RAxML) trees obtained by this second round of independent analyses strongly supported the monophyly of the genus Aspergillus. The stability test also confirmed the robustness of the results obtained. In conclusion, statistical analyses have rejected the hypothesis that the Aspergilli are non-monophyletic, and provided robust arguments that the genus is monophyletic and clearly separated from the monophyletic genus Penicillium. There is no phylogenetic evidence to split Aspergillus into several genera and the name Aspergillus can be used for all the species belonging to Aspergillus i.e. the clade comprising the subgenera Aspergillus, Circumdati, Fumigati, Nidulantes, section Cremei and certain species which were formerly part of the genera Phialosimplex and Polypaecilum. Section Cremei and the clade containing Polypaecilum and Phialosimplex are proposed as new subgenera of Aspergillus. The phylogenetic analysis also clearly shows that Aspergillus clavatoflavus and A. zonatus do not belong to the genus Aspergillus. Aspergillus clavatoflavus is therefore transferred to a new genus Aspergillago as Aspergillago clavatoflavus and A. zonatus was transferred to Penicilliopsis as P. zonata. The subgenera of Aspergillus share similar extrolite profiles indicating that the genus is one large genus from a chemotaxonomical point of view. Morphological and ecophysiological characteristics of the species also strongly indicate that Aspergillus is a polythetic class in phenotypic characters
Historical and current aspects of angiovisualization methods in CАD (a literature review)
The aim of the work. To summarize and expand knowledge about current methods used for visualization of coronary arteries, their evolution, capabilities, effectiveness, indications for use, safety for patients, guided by the principles of evidence-based medicine.
Coronary artery disease (CАD) is an extremely common clinical cardiovascular disease, which is caused by atherosclerosis of the subepicardial coronary arteries (CAs) and can have both acute and chronic course. The incidence of CАD is increasing every year and getting younger. CАD has not only a high morbidity rate, but also a high mortality rate. In Ukraine, mortality from CАD is the main cause of population mortality. Without timely diagnosis and effective treatment, myocardial infarction or sudden cardiac death may develop.
It is possible to ascertain the etiological cause of myocardial ischemia only after visualization of the СAs. A practicing physician is able to visualize the СAs using X-ray contrast coronary angiography or contrast-enhanced computed tomography of the chest. СA visualization methods have been used in clinical practice for more than half a century. The hardware and software are constantly upgraded, the diagnostic options of these methods are improved and expanded, and recommendations regarding their use in general clinical practice are updated. The main task for clinicians is to confirm or rule out the presence of a СA atherosclerotic lesion, as well as to determine its localization, extent, degree of stenosis and its significance for coronary blood flow, the presence of СA calcification, collateral pathways, plaque composition and its internal structure. Only after identifying the anatomical and physiological aspects of the atherosclerotic process in СA, it is possible to choose the right strategy for the treatment of patients by a multidisciplinary heart team including pharmacological therapy, a method of cardiac revascularization, and measures for primary or secondary prevention.
Conclusions. CАD is a common disease worldwide. Today, two methods of the CА visualization are available – invasive coronary angiography and non-invasive coronary CT angiography. Further research is needed on the efficacy and safety of different СA imaging methods in CAD. Better results of the diagnostic search depend on both the capabilities of the clinic hardware component and on the optimal sequence for diagnostic processes rationally constructed by physicians
Host-driven subspeciation in the hedgehog fungus, Trichophyton erinacei, an emerging cause of human dermatophytosis
Altres ajuts: Czech Ministry of Health (grant NU21-05-00681)Trichophyton erinacei is a main cause of dermatophytosis in hedgehogs and is increasingly reported from human infections worldwide. This pathogen was originally described in the European hedgehog (Erinaceus europaeus) but is also frequently found in the African four-toed hedgehog (Atelerix albiventris), a popular pet animal worldwide. Little is known about the taxonomy and population genetics of this pathogen despite its increasing importance in clinical practice. Notably, whether there are different populations or even cryptic species associated with different hosts or geographic regions is not known. To answer these questions, we collected 161 isolates, performed phylogenetic and population-genetic analyses, determined mating-type, and characterised morphology and physiology. Multigene phylogeny and microsatellite analysis supported T. erinacei as a monophyletic species, in contrast to highly incongruent single-gene phylogenies. Two main subpopulations, one specific mainly to Atelerix and second to Erinaceus hosts, were identified inside T. erinacei, and slight differences in the size of microconidia and antifungal susceptibilities were observed among them. Although the process of speciation into two lineages is ongoing in T. erinacei, there is still gene flow between these populations. Thus, we present T. erinacei as a single species, with notable intraspecies variability in genotype and phenotype. The data from wild hedgehogs indicated that sexual reproduction in T. erinacei and de novo infection of hedgehogs from soil are probably rare events and that clonal horizontal spread strongly dominates. The molecular typing approach used in this study represents a suitable tool for further epidemiological surveillance of this emerging pathogen in both animals and humans. The results of this study also highlighted the need to use a multigene phylogeny ideally in combination with other inde-pendent molecular markers to understand the species boundaries of dermatophytes
Phylogeny, identification and nomenclature of the genus Aspergillus
AbstractAspergillus comprises a diverse group of species based on morphological, physiological and phylogenetic characters, which significantly impact biotechnology, food production, indoor environments and human health. Aspergillus was traditionally associated with nine teleomorph genera, but phylogenetic data suggest that together with genera such as Polypaecilum, Phialosimplex, Dichotomomyces and Cristaspora, Aspergillus forms a monophyletic clade closely related to Penicillium. Changes in the International Code of Nomenclature for algae, fungi and plants resulted in the move to one name per species, meaning that a decision had to be made whether to keep Aspergillus as one big genus or to split it into several smaller genera. The International Commission of Penicillium and Aspergillus decided to keep Aspergillus instead of using smaller genera. In this paper, we present the arguments for this decision. We introduce new combinations for accepted species presently lacking an Aspergillus name and provide an updated accepted species list for the genus, now containing 339 species. To add to the scientific value of the list, we include information about living ex-type culture collection numbers and GenBank accession numbers for available representative ITS, calmodulin, β-tubulin and RPB2 sequences. In addition, we recommend a standard working technique for Aspergillus and propose calmodulin as a secondary identification marker
Reducing the number of accepted species in Aspergillus series Nigri
The Aspergillus series Nigri contains biotechnologically and medically important species. They can produce hazardous mycotoxins, which is relevant due to the frequent occurrence of these species on foodstuffs and in the indoor environment. The taxonomy of the series has undergone numerous rearrangements, and currently, there are 14 species accepted in the series, most of which are considered cryptic. Species-level identifications are, however, problematic or impossible for many isolates even when using DNA sequencing or MALDI-TOF mass spectrometry, indicating a possible problem in the definition of species limits or the presence of undescribed species diversity. To re-examine the species boundaries, we collected DNA sequences from three phylogenetic markers (benA, CaM and RPB2) for 276 strains from series Nigri and generated 18 new whole-genome sequences. With the three-gene dataset, we employed phylogenetic methods based on the multispecies coalescence model, including four single-locus methods (GMYC, bGMYC, PTP and bPTP) and one multilocus method (STACEY). From a total of 15 methods and their various settings, 11 supported the recognition of only three species corresponding to the three main phylogenetic lineages: A. niger, A. tubingensis and A. brasiliensis. Similarly, recognition of these three species was supported by the GCPSR approach (Genealogical Concordance Phylogenetic Species Recognition) and analysis in DELINEATE software. We also showed that the phylogeny based on benA, CaM and RPB2 is suboptimal and displays significant differences from a phylogeny constructed using 5 752 single-copy orthologous proteins; therefore, the results of the delimitation methods may be subject to a higher than usual level of uncertainty. To overcome this, we randomly selected 200 genes from these genomes and performed ten independent STACEY analyses, each with 20 genes. All analyses supported the recognition of only one species in the A. niger and A. brasiliensis lineages, while one to four species were inconsistently delimited in the A. tubingensis lineage. After considering all of these results and their practical implications, we propose that the revised series Nigri includes six species: A. brasiliensis, A. eucalypticola, A. luchuensis (syn. A. piperis), A. niger (syn. A. vinaceus and A. welwitschiae), A. tubingensis (syn. A. chiangmaiensis, A. costaricensis, A. neoniger and A. pseudopiperis) and A. vadensis. We also showed that the intraspecific genetic variability in the redefined A. niger and A. tubingensis does not deviate from that commonly found in other aspergilli. We supplemented the study with a list of accepted species, synonyms and unresolved names, some of which may threaten the stability of the current taxonomy.The Czech Ministry of Health, the Charles University Research Centre program, the Czech Academy of Sciences Long-term Research Development Project, the project of Charles University Grant Agency, JST SPRING, the Foundational Biodiversity Information Programme (FBIP) of the National Research Foundation of South Africa, the Japan Society for the Promotion of Science - Postdoctoral Fellowships for Research in Japan and Grant-in-aid for a JSPS research fellow.https://www.journals.elsevier.com/studies-in-mycologyam2023BiochemistryGeneticsMicrobiology and Plant Patholog
A systematic review of protocol studies on conceptual design cognition
This paper reports the first systematic review and synthesis of protocol studies on conceptual design cognition. 47 protocol studies from the domains of architectural design, engineering design, and product de-sign engineering were reviewed towards answering the following re-search question: What is our current understanding of the cognitive processes involved in conceptual design tasks carried out by individual designers? Studies were found to reflect three viewpoints on the cognitive nature of designing, namely: design as search; design as ex-ploration; and design activities. Synthesising the findings of individual studies yielded a classification of cognitive processes involved in con-ceptual design tasks, described in different terms across different viewpoints. Towards a common terminology, these processes are posi-tioned within the cognitive psychology literature, revealing seven basic types of process that appear to be fundamental to designing across all viewpoints: memory (working and long term); visual perception; men-tal imagery; attention; semantic association; cognitive control; and higher-order processes, e.g. analysis and reasoning. The development of common cognitive models of conceptual design, grounded in a sci-entifically rigorous understanding of design cognition, is identified as an avenue for future research
- …