16 research outputs found
Autotransplantation of parathyroid grafts into the tibialis anterior muscle after parathyroidectomy: a novel autotransplantation site
Background: Surgical management of renal secondary hyperparathyroidism (sHPT) is varying. Total parathyroidectomy with heterotopic autotransplantation (TPTX + AT) is one of the standard surgical procedures in sHPT, but there is no consensus about the optimal site for graft insertion. At the surgical department of the University Hospital of Heidelberg we prefer the autotransplantation into the tibialis anterior muscle. The aim of this study was to assess the long-term function of the auto-transplanted parathyroid tissue in this type of surgical procedure. Methods: The function of the autograft of 42 patients was assessed 8.2 ± 2.5 years after surgery, using a modified Casanova-test of the leg bearing the parathyroid tissue. Ischemic blockage was induced by tourniquet and the levels of parathyroid hormone (PTH) were assessed during the test. Results: At the point of assessment, the ischemic blockage led to a significant reduction in the concentration of PTH (≥50 % of the baseline value) in 19 patients (45 %) indicating well-functioning autografts. In 11 patients (26 %), ischemic blockage did not cause any change in the concentration of PTH (≤20 % of the baseline value), indicating functioning residual parathyroid tissue from another site. The source of PTH production was classified as unidentifiable in five patients (12 %). Two patients had developed graft-dependent recurrent HPT (5 %) without therapeutic consequences and three patients suffered from persistent symptomatic hypoparathyroidism (7 %). Conclusions: These results indicate that TPTX + AT into the tibialis anterior muscle is a successful surgical treatment for renal HPT and that the modified Casanova-test is a suitable diagnostic tool for autografts function
A randomized controlled trial to investigate the influence of low dose radiotherapy on immune stimulatory effects in liver metastases of colorectal cancer
<p>Abstract</p> <p>Background</p> <p>Insufficient migration and activation of tumor specific effector T cells in the tumor is one of the main reasons for inadequate host anti-tumor immune response. External radiation seems to induce inflammation and activate the immune response. This phase I/II clinical trial aims to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with colorectal liver metastases.</p> <p>Methods/Design</p> <p>This is an investigator-initiated, prospective randomised, 4-armed, controlled Phase I/II trial. Patients undergoing elective hepatic resection due to colorectal cancer liver metastasis will be enrolled in the study. Patients will receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation targeted to their liver metastasis. Radiation will be applied by external beam radiotherapy using a 6 MV linear accelerator (Linac) with intensity modulated radiotherapy (IMRT) technique two days prior to surgical resection. All patients admitted to the Department of General-, Visceral-, and Transplantion Surgery, University of Heidelberg for elective hepatic resection are consecutively screened for eligibility into this trial, and written informed consent is obtained before inclusion. The primary objective is to assess the effect of active local external beam radiation dose on, tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include radiogenic treatment toxicity, postoperative morbidity and mortality, local tumor control and recurrence patterns, survival and quality of life. Furthermore, frequencies of systemic tumor reactive T cells in blood and bone marrow will be correlated with clinical outcome.</p> <p>Discussion</p> <p>This is a randomized controlled patient blinded trial to assess the safety and efficiency of low dose radiotherapy on metastasis infiltrating T cells and thus potentially enhance the antitumor immune response.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01191632">NCT01191632</a></p
Randomized controlled phase I/II study to investigate immune stimulatory effects by low dose radiotherapy in primarily operable pancreatic cancer
<p>Abstract</p> <p>Background</p> <p>The efficiencies of T cell based immunotherapies are affected by insufficient migration and activation of tumor specific effector T cells in the tumor. Accumulating evidence exists on the ability of ionizing radiation to modify the tumor microenvironment and generate inflammation. The aim of this phase I/II clinical trial is to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with pancreatic cancer.</p> <p>Methods/Design</p> <p>This trial has been designed as an investigator initiated; prospective randomised, 4-armed, controlled Phase I/II trial. Patients who are candidates for resection of pancreatic cancer will be randomized into 4 arms. A total of 40 patients will be enrolled. The patients receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation precisely targeted to their pancreatic carcinoma. Radiation will be delivered by external beam radiotherapy using a 6 MV Linac with IMRT technique 48 h prior to the surgical resection. The primary objective is the determination of an active local external beam radiation dose, leading to tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include local tumor control and recurrence patterns, survival, radiogenic treatment toxicity and postoperative morbidity and mortality, as well as quality of life. Further, frequencies of tumor reactive T cells in blood and bone marrow as well as whole blood cell transcriptomics and plasma-proteomics will be correlated with clinical outcome. An interim analysis will be performed after the enrolment of 20 patients for safety reasons. The evaluation of the primary endpoint will start four weeks after the last patient's enrolment.</p> <p>Discussion</p> <p>This trial will answer the question whether a low dose radiotherapy localized to the pancreatic tumor only can increase the number of tumor infiltrating T cells and thus potentially enhance the antitumor immune response. The study will also investigate the prognostic and predictive value of radiation-induced T cell activity along with transcriptomic and proteomic data with respect to clinical outcome.</p> <p>Trial registration</p> <p>ClinicalTrials.gov - <a href="http://www.clinicaltrials.gov/ct2/show/NCT01027221">NCT01027221</a></p
Minichromosome Maintenance Expression Defines Slow-Growing Gastroenteropancreatic Neuroendocrine Neoplasms
BACKGROUND: Small intestinal neuroendocrine neoplasm (SI-NEN) proliferation is quantified by Ki67 measurements which capture G1-G2M phases of the cell cycle. G0 and early G1 phases, typical of slow-growing cells, can be detected by minichromosome maintenance protein (MCM) expression. We hypothesized that these replication licensing markers may provide clinically relevant information to augment Ki67 in low-grade neuroendocrine neoplasia. METHODS: Immunohistochemical staining (IHC), Western blot analysis, quantitative polymerase chain reaction, and copy number variations of MCM2, MCM3, and Ki67 were undertaken in SI-NENs (n = 22). MCM and Ki67 expression was compared by Kaplan-Meier survival analysis (tissue microarray, independent set [n = 55]). Forty-three pancreatic NENs and 14 normal tissues were included as controls. RESULTS: In SI-NENs, MCM2 (mean: 21.2%: range: 16%-25%) and MCM3 (28.7%: 22%-34%) were detected in significantly more cells than Ki67 (2.3%: 0%-7%, P < .01). MCM2 mRNA correlated with Ki67 IHC (P < .05). MCM3 protein expression was higher in metastases (38-fold) than in normal small intestine (P = .06) and was largely absent in normal neuroendocrine cells. There was considerable variation at the MCM copy number level (0-4 copies). MCM3 expression in proliferating cells significantly predicted overall survival (P < .002). Combinations of Ki67 and MCM2/3 in algorithms differentiated low and higher proliferative lesions (overall survival: 12 vs 6.1 years, P = .06). MCM expression was not informative in pancreatic NENs. CONCLUSION: MCMs are expressed in a higher proportion of NEN cells than Ki67 in slow-growing small intestinal lesions and correlate with survival. Assessment can be used to augment Ki67 to improve prognostic classification in these low-grade tumors
An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild-type and endothelial NO synthase knockout mice
In addition to nitric oxide (NO) and prostacyclin (PGI(2)), the endothelium generates the endothelium-derived hyperpolarizing factor (EDHF). We set out to determine whether an EDHF-like response can be detected in wild-type (WT) and endothelial NO synthase knockout mice (eNOS −/−) mice. Vasodilator responses to endothelium-dependent agonists were determined in vivo and in vitro. In vivo, bradykinin induced a pronounced, dose-dependent decrease in mean arterial pressure (MAP) which did not differ between WT and eNOS −/− mice and was unaffected by treatment with N(ω)-nitro-l-arginine methyl ester and diclofenac. In the saline-perfused hindlimb of WT and eNOS −/− mice, marked N(ω)-nitro-l-arginine (l-NA, 300 μmol/liter)- and diclofenac-insensitive vasodilations in response to both bradykinin and acetylcholine (ACh) were observed, which were more pronounced than the agonist-induced vasodilation in the hindlimb of WT in the absence of l-NA. This endothelium-dependent, NO/PGI(2)-independent vasodilatation was sensitive to KCl (40 mM) and to the combination of apamin and charybdotoxin. Gap junction inhibitors (18α-glycyrrhetinic acid, octanol, heptanol) and CB-1 cannabinoid-receptor agonists (Δ(9)-tetrahydrocannabinol, HU210) impaired EDHF-mediated vasodilation, whereas inhibition of cytochrome P450 enzymes, soluble guanylyl cyclase, or adenosine receptors had no effect on EDHF-mediated responses. These results demonstrate that in murine resistance vessels the predominant agonist-induced endothelium-dependent vasodilation in vivo and in vitro is not mediated by NO, PGI(2), or a cytochrome P450 metabolite, but by an EDHF-like principle that requires functional gap junctions