32 research outputs found

    An on-line post-column detection system for the detection of reactive-oxygen-species-producing compounds and antioxidants in mixtures

    Get PDF
    Reactive oxygen species (ROS) can damage proteins, cause lipid peroxidation, and react with DNA, ultimately resulting in harmful effects. Antioxidants constitute one of the defense systems used to neutralize pro-oxidants. Since pro-oxidants and antioxidants are found ubiquitously in nature, pro-and antioxidant effects of individual compounds and of mixtures receive much attention in scientific research. A major bottleneck in these studies, however, is the identification of the individual pro-oxidants and antioxidants in mixtures. Here, we describe the development and validation of an on-line post-column biochemical detection system for ROS-producing compounds and antioxidants in mixtures. Inclusion of cytochrome P450s and cytochrome P450 reductase also permitted the screening of compounds that need bioactivation to exert their ROS-producing properties. This pro-oxidant and antioxidant detection system was integrated on-line with gradient HPLC. The resulting high-resolution screening technology was able to separate mixtures of ROS-producing compounds and antioxidants, allowing each species to be characterized rapidly and sensitively

    Direct Dynamic Protein-Affinity Selection Mass-Spectrometry

    Get PDF
    A new methodology is described enabling the affinity screening of potential ligands towards the human estrogen receptor alpha ligand binding domain (ERα-LBD). In-solution incubation is performed of the analyte and the His-tagged ERα-LBD. The bound complex is immobilized on a nickel-loaded protein-affinity selection column, where after the unbound fraction is removed. The immobilized protein–ligand complex is exposed to a decreased pH value and an increased organic modifier concentration releasing the ligand for MS detection, and precipitating the proteins on a filter positioned between the affinity column and the mass spectrometer. The trapping column can be regenerated for reuse at least 70 times. The advantages of the methodology over existing methodologies are the absence of a pre-concentration as well as a chromatographic separation step, resulting in a significantly shorter analysis time compared to previously described procedures, and in addition, allowing the determination of solutes with unfavorable chromatographic properties. The overall analysis time now can be reduced about 250% to approximately 6 min. Replacing the filters after every measurement results in an intra-day standard deviation of 14.8% and an inter-day standard deviation of 21.3%

    On-line electrochemistry–bioaffinity screening with parallel HR-LC-MS for the generation and characterization of modified p38α kinase inhibitors

    Get PDF
    In this study, an integrated approach is developed for the formation, identification and biological characterization of electrochemical conversion products of p38α mitogen-activated protein kinase inhibitors. This work demonstrates the hyphenation of an electrochemical reaction cell with a continuous-flow bioaffinity assay and parallel LC-HR-MS. Competition of the formed products with a tracer (SKF-86002) that shows fluorescence enhancement in the orthosteric binding site of the p38α kinase is the readout for bioaffinity. Parallel HR-MSn experiments provided information on the identity of binders and non-binders. Finally, the data produced with this on-line system were compared to electrochemical conversion products generated off-line. The electrochemical conversion of 1-{6-chloro-5-[(2R,5S)-4-(4-fluorobenzyl)-2,5-dimethylpiperazine-1-carbonyl]-3aH-indol-3-yl}-2-morpholinoethane-1,2-dione resulted in eight products, three of which showed bioaffinity in the continuous-flow p38α bioaffinity assay used. Electrochemical conversion of BIRB796 resulted, amongst others, in the formation of the reactive quinoneimine structure and its corresponding hydroquinone. Both products were detected in the p38α bioaffinity assay, which indicates binding to the p38α kinase

    Advances in mass spectrometry-based post-column bioaffinity profiling of mixtures

    Get PDF
    In the screening of complex mixtures, for example combinatorial libraries, natural extracts, and metabolic incubations, different approaches are used for integrated bioaffinity screening. Four major strategies can be used for screening of bioactive mixtures for protein targets—pre-column and post-column off-line, at-line, and on-line strategies. The focus of this review is on recent developments in post-column on-line screening, and the role of mass spectrometry (MS) in these systems. On-line screening systems integrate separation sciences, mass spectrometry, and biochemical methodology, enabling screening for active compounds in complex mixtures. There are three main variants of on-line MS based bioassays: the mass spectrometer is used for ligand identification only; the mass spectrometer is used for both ligand identification and bioassay readout; or MS detection is conducted in parallel with at-line microfractionation with off-line bioaffinity analysis. On the basis of the different fields of application of on-line screening, the principles are explained and their usefulness in the different fields of drug research is critically evaluated. Furthermore, off-line screening is discussed briefly with the on-line and at-line approaches

    Development of an online p38α mitogen-activated protein kinase binding assay and integration of LC–HR-MS

    Get PDF
    A high-resolution screening method was developed for the p38α mitogen-activated protein kinase to detect and identify small-molecule binders. Its central role in inflammatory diseases makes this enzyme a very important drug target. The setup integrates separation by high-performance liquid chromatography with two parallel detection techniques. High-resolution mass spectrometry gives structural information to identify small molecules while an online enzyme binding detection method provides data on p38α binding. The separation step allows the individual assessment of compounds in a mixture and links affinity and structure information via the retention time. Enzyme binding detection was achieved with a competitive binding assay based on fluorescence enhancement which has a simple principle, is inexpensive, and is easy to interpret. The concentrations of p38α and the fluorescence tracer SK&F86002 were optimized as well as incubation temperature, formic acid content of the LC eluents, and the material of the incubation tubing. The latter notably improved the screening of highly lipophilic compounds. For optimization and validation purposes, the known kinase inhibitors BIRB796, TAK715, and MAPKI1 were used among others. The result is a high-quality assay with Z′ factors around 0.8, which is suitable for semi-quantitative affinity measurements and applicable to various binding modes. Furthermore, the integrated approach gives affinity data on individual compounds instead of averaged ones for mixtures

    Identification of the Biotransformation Products of 2-Ethylhexyl 4-(N,N-Dimethylamino)benzoate

    Get PDF
    Nowadays, 2-ethylhexyl 4-(N,N-dimethylamino)benzoate (EDP) is one of the most widely used UV filters in sunscreen cosmetics and other cosmetic products. However, undesirable processes such as percutaneous absorption and biological activity have been attributed to this compound. The in vitro metabolism of EDP was elucidated in the present work. First of all, the phase I biotransformation was studied in rat liver microsomes and two metabolites, N,N-dimethyl-p-aminobenzoic acid (DMP) and N-monomethyl-p-aminobenzoic acid (MMP), were identified by GC-MS analysis. Secondly, the phase II metabolism was investigated by means of LC-MS. The investigated reactions were acetylation and glucuronidation working with rat liver cytosol and with both human and rat liver microsomes, respectively. Analogue studies with p-aminobenzoic acid (PABA) were carried out in order to compare the well established metabolic pathway of PABA with the unknown biotransformation of EDP. In addition, a method for the determination of EDP and its two phase I metabolites in human urine was developed. The methodology requires a solid-phase extraction prior to LC-MS analysis. The method is based on standard addition quantification and has been fully validated. The repeatability of the method, expressed as relative standard deviation, was in the range 3.4–7.4% and the limit of detection for all quantified analytes was in the low ng mL−1 range

    Targeted LC–MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA

    Get PDF
    Based on the template of a recently introduced derivatization reagent for aldehydes, 4-(2-(trimethylammonio)ethoxy)benzeneaminium dibromide (4-APC), a new derivatization agent was designed with additional features for the analysis and screening of biomarkers of lipid peroxidation. The new derivatization reagent, 4-(2-((4-bromophenethyl)dimethylammonio)ethoxy)benzenaminium dibromide (4-APEBA) contains a bromophenethyl group to incorporate an isotopic signature to the derivatives and to add additional fragmentation identifiers, collectively enhancing the abilities for detection and screening of unknown aldehydes. Derivatization can be achieved under mild conditions (pH 5.7, 10 °C). By changing the secondary reagent (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide instead of sodium cyanoborohydride), 4-APEBA is also applicable to the selective derivatization of carboxylic acids. Synthesis of the new label, exploration of the derivatization conditions, characterization of the fragmentation of the aldehyde and carboxylic acid derivatives in MS/MS, and preliminary applications of the labeling strategy for the analysis of aldehydes in urine and plasma are described

    Recent developments in protein–ligand affinity mass spectrometry

    Get PDF
    This review provides an overview of direct and indirect technologies to screen protein–ligand interactions with mass spectrometry. These technologies have as a key feature the selection or affinity purification of ligands in mixtures prior to detection. Specific fields of interest for these technologies are metabolic profiling of bioactive metabolites, natural extract screening, and the screening of libraries for bioactives, such as parallel synthesis libraries and small combichem libraries. The review addresses the principles of each of the methods discussed, with a focus on developments in recent years, and the applicability of the methods to lead generation and development in drug discovery

    Studying protein–protein affinity and immobilized ligand–protein affinity interactions using MS-based methods

    Get PDF
    This review discusses the most important current methods employing mass spectrometry (MS) analysis for the study of protein affinity interactions. The methods are discussed in depth with particular reference to MS-based approaches for analyzing protein–protein and protein–immobilized ligand interactions, analyzed either directly or indirectly. First, we introduce MS methods for the study of intact protein complexes in the gas phase. Next, pull-down methods for affinity-based analysis of protein–protein and protein–immobilized ligand interactions are discussed. Presently, this field of research is often called interactomics or interaction proteomics. A slightly different approach that will be discussed, chemical proteomics, allows one to analyze selectivity profiles of ligands for multiple drug targets and off-targets. Additionally, of particular interest is the use of surface plasmon resonance technologies coupled with MS for the study of protein interactions. The review addresses the principle of each of the methods with a focus on recent developments and the applicability to lead compound generation in drug discovery as well as the elucidation of protein interactions involved in cellular processes. The review focuses on the analysis of bioaffinity interactions of proteins with other proteins and with ligands, where the proteins are considered as the bioactives analyzed by MS

    Development of a microfluidic confocal fluorescence detection system for the hyphenation of nano-LC to on-line biochemical assays

    Get PDF
    One way to profile complex mixtures for receptor affinity is to couple liquid chromatography (LC) on-line to biochemical detection (BCD). A drawback of this hyphenated screening approach is the relatively high consumption of sample, receptor protein and (fluorescently labeled) tracer ligand. Here, we worked toward minimization of sample and reagent consumption, by coupling nano-LC on-line to a light-emitting diode (LED) based capillary confocal fluorescence detection system capable of on-line BCD with low-flow rates. In this fluorescence detection system, a capillary with an extended light path (bubble cell) was used as a detection cell in order to enhance sensitivity. The technology was applied to a fluorescent enhancement bioassay for the acetylcholine binding protein, a structural analog of the extracellular ligand-binding domain of neuronal nicotinic acetylcholine receptors. In the miniaturized setup, the sensitive and low void volume LED-induced confocal fluorescence detection system operated in flow injection analysis mode allowing the measurement of IC(50) values, which were comparable with those measured by a conventional plate reader bioassay. The current setup uses 50 nL as injection volume with a carrier flow rate of 400 nL/min. Finally, coupling of the detection system to gradient reversed-phase nano-LC allowed analysis of mixtures in order to identify the bioactive compounds present by injecting 10 nL of each mixture
    corecore