3,631 research outputs found
Surface Roughness Dominated Pinning Mechanism of Magnetic Vortices in Soft Ferromagnetic Films
Although pinning of domain walls in ferromagnets is ubiquitous, the absence
of an appropriate characterization tool has limited the ability to correlate
the physical and magnetic microstructures of ferromagnetic films with specific
pinning mechanisms. Here, we show that the pinning of a magnetic vortex, the
simplest possible domain structure in soft ferromagnets, is strongly correlated
with surface roughness, and we make a quantitative comparison of the pinning
energy and spatial range in films of various thickness. The results demonstrate
that thickness fluctuations on the lateral length scale of the vortex core
diameter, i.e. an effective roughness at a specific length scale, provides the
dominant pinning mechanism. We argue that this mechanism will be important in
virtually any soft ferromagnetic film.Comment: 4 figure
Constraints on the average magnetic field strength of relic radio sources 0917+75 and 1401-33 from XMM-Newton observations
We observed two relic radio sources, 0917+75 and 1401-33, with the XMM-Newton
X-ray observatory. We did not detect any X-ray emission, thermal or
non-thermal, in excess of the local background level from either target. This
imposes new upper limits on the X-ray flux due to inverse Compton scattering of
photons from the cosmic microwave background by relativistic electrons in the
relic sources, and new lower limits on the magnetic field strength from the
relative strength of the radio and X-ray emission. The combination of radio and
X-ray observations provides a measure of the magnetic field independent of
equipartition or minimum energy assumptions. Due to increasing sensitivity of
radio observations, the known population of cluster relics has been growing;
however, studies of non-thermal X-ray emission from relics remain scarce. Our
study adds to the small sample of relics studied in X-rays. In both relics, our
field strength lower limits are slightly larger than estimates of the
equipartition magnetic field.Comment: 11 pages, 5 figures. Accepted by MNRA
Interaction of Acid-sensing Ion Channel (ASIC) 1 with the Tarantula Toxin Psalmotoxin 1 is State Dependent
Acid-sensing ion channels (ASICs) are Na+ channels gated by extracellular H+. Six ASIC subunits that are expressed in neurons have been characterized. The tarantula toxin psalmotoxin 1 has been reported to potently and specifically inhibit homomeric ASIC1a and has been useful to characterize ASICs in neurons. Recently we have shown that psalmotoxin 1 inhibits ASIC1a by increasing its apparent affinity for H+. However, the mechanism by which PcTx1 increases the apparent H+ affinity remained unclear. Here we show that PcTx1 also interacts with ASIC1b, a splice variant of ASIC1a. However, PcTx1 does not inhibit ASIC1b but promotes its opening; under slightly acidic conditions, PcTx1 behaves like an agonist for ASIC1b. Our results are most easily explained by binding of PcTx1 with different affinities to different states (closed, open, and desensitized) of the channel. For ASIC1b, PcTx1 binds most tightly to the open state, promoting opening, whereas for ASIC1a, it binds most tightly to the open and the desensitized state, promoting desensitization
Effects of Bulk and Surface Conductivity on the Performance of CdZnTe Pixel Detectors
We studied the effects of bulk and surface conductivity on the performance of
high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize
the difference in mechanisms of the bulk and surface conductivity as indicated
by their different temperature behaviors. In addition, the existence of a thin
(10-100 A) oxide layer on the surface of CZT, formed during the fabrication
process, affects both bulk and surface leakage currents. We demonstrate that
the measured I-V dependencies of bulk current can be explained by considering
the CZT detector as a metal-semiconductor-metal system with two back-to-back
Schottky-barrier contacts. The high surface leakage current is apparently due
to the presence of a low-resistivity surface layer that has characteristics
which differ considerably from those of the bulk material. This surface layer
has a profound effect on the charge collection efficiency in detectors with
multi-contact geometry; some fraction of the electric field lines originated on
the cathode intersects the surface areas between the pixel contacts where the
charge produced by an ionizing particle gets trapped. To overcome this effect
we place a grid of thin electrodes between the pixel contacts; when the grid is
negatively biased, the strong electric field in the gaps between the pixels
forces the electrons landing on the surface to move toward the contacts,
preventing the charge loss. We have investigated these effects by using CZT
pixel detectors indium bump bonded to a custom-built VLSI readout chip
The Tarantula Toxin Psalmotoxin 1 Inhibits Acid-sensing Ion Channel (ASIC) 1a by Increasing Its Apparent H+ Affinity
Acid-sensing ion channels (ASICs) are ion channels activated by extracellular protons. They are involved in higher brain functions and perception of pain, taste, and mechanical stimuli. Homomeric ASIC1a is potently inhibited by the tarantula toxin psalmotoxin 1. The mechanism of this inhibition is unknown. Here we show that psalmotoxin 1 inhibits ASIC1a by a unique mechanism: the toxin increases the apparent affinity for H+ of ASIC1a. Since ASIC1a is activated by H+ concentrations that are only slightly larger than the resting H+ concentration, this increase in H+ affinity is sufficient to shift ASIC1a channels into the desensitized state. As activation of ASIC1a has recently been linked to neurodegeneration associated with stroke, our results suggest chronic desensitization of ASIC1a by a slight increase of its H+ affinity as a possible way of therapeutic intervention in stroke
- …