47 research outputs found

    Ocean warming is the key filter for successful colonization of the migrant octocoral Melithaea erythraea (Ehrenberg, 1834) in the Eastern Mediterranean Sea

    Get PDF
    Climate, which sets broad limits for migrating species, is considered a key filter to species migration between contrasting marine environments. The Southeast Mediterranean Sea (SEMS) is one of the regions where ocean temperatures are rising the fastest under recent climate change. Also, it is the most vulnerable marine region to species introductions. Here, we explore the factors which enabled the colonization of the endemic Red Sea octocoral Melithaea erythraea (Ehrenberg, 1834) along the SEMS coast, using sclerite oxygen and carbon stable isotope composition (delta O-18(SC) and delta C-13(SC)), morphology, and crystallography. The unique conditions presented by the SEMS include a greater temperature range (similar to 15 degrees C) and ultra-oligotrophy, and these are reflected by the lower delta C-13(SC) values. This is indicative of a larger metabolic carbon intake during calcification, as well as an increase in crystal size, a decrease of octocoral wart density and thickness of the migrating octocoral sclerites compared to the Red Sea samples. This suggests increased stress conditions, affecting sclerite deposition of the SEMS migrating octocoral. The delta(OSC)-O-18 range of the migrating M. erythraea indicates a preference for warm water sclerite deposition, similar to the native depositional temperature range of 21-28 degrees C. These findings are associated with the observed increase of minimum temperatures in winter for this region, at a rate of 0.35 +/- 0.27 degrees C decade(-1) over the last 30 years, and thus the region is becoming more hospitable to the IndoPacific M. erythraea. This study shows a clear case study of "tropicalization" of the Mediterranean Sea due to recent warming

    Isotope studies of fossil shells give insight in the Miocene paleogeography of western Amazonia

    Get PDF
    The Cenozoic landscapes of South America have been governed by the interaction of its large scale geological units. On the one hand these are the tectonically quiescent cratonic units ofthe Guyana and Brazilian Shields, that formed the core of the continent from the moment it separated from Africa in the Cretaceous. On the other hand, there is the Andean mountain chain that has been developing since that time, shaping and reshaping South American landforms and ecosystems. One of the more significant Andean mountain building phases took place in the Early and Middle Miocene, which probably shut down most Pacific intluences on South America, and established the wet Atlantic climate system which still dominates the area today. As a result, the Amazon Basin in the Middle and Late Miocene knew widespread wetland environments, the fossiliferous sediments of which are now known as the Pebas Formation. Good chronostratigraphy of the Pebas Fm long remained problematic. Since the 1990's it has become clear from the work ofNutall (1990) and Hoorn et al. (1993, 1994a, 1994b) that the Pebas Fm is of late Early to early Late Miocene age

    A high-resolution stable isotope record from a Peruvian stalagmite

    Get PDF
    Speleothems are known as carbonate formations in caves. The last few years there is a growing scientific interest in speleothems for climate reconstruction (McDermott, in press; Sancho et al., in press; Jirnénez de Cisneros et al., 2003; Genty et al., 2003; Baker et al., 2002; Proctor et al., 2002; Linge et al., 2001; Wang et al., 2001). Speleothems have proven their potential to create a terrestrial high-resolution paleo-temperature record (Schwarcz, 1986). The advantage of caves for paleoclimatic studies is the yearly stability of climatic conditions in the cave (Jirnénez de Cisneros et al., 2003). Observations have shown that the temperature in any deep cave is clase to the mean annual temperature of the surrounding (Schwarcz et al., 1976; Yonge et al., 1985). This makes speleothems a successful too! paleo-temperature reconstruction (Hendy and Wilson, 1968). The carbonate, ofwhich the speleothem is build, can be used for stable isotope measurements (o13C and o180). Oxygen isotopes are world-wide used to reconstruct paleo-temperatures, especially for biogenic carbonate in marine cores. Precise age-dating on speleothems can be done by U-Th measurements on TIMS, which makes it possible to calculate absolute ages for the isotope record

    Anthropogenic acidification of surface waters drives decreased biogenic calcification in the Mediterranean Sea

    Get PDF
    This work contributes to the ICTA-UAB “Unit of Excellence” (FPI/MDM-2015-0552- 16-2; CEX2019-000940-M) and was funded by the Spanish Ministry of Science and Innovation, BIOCAL Project (PID2020-113526RB-I00), the EU-FP7 “Mediterranean Sea Acidification in a Changing Climate” project (MedSeA; grant agreement 265103), and the Generalitat de Catalunya (MERS, 2021 SGR 00640). J.W.B.R. acknowledges the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement 805246) and B.M the Severo Ochoa grant CEX2018-000794-S and CSIC LINKA20102. G.L. acknowledges funding from the Spanish Ministry of Universities through a Maria Zambrano grant.Anthropogenic carbon dioxide emissions directly or indirectly drive ocean acidification, warming and enhanced stratification. The combined effects of these processes on marine planktic calcifiers at decadal to centennial timescales are poorly understood. Here, we analyze size normalized planktic foraminiferal shell weight, shell geochemistry, and supporting proxies from 3 sediment cores in the Mediterranean Sea spanning several centuries. Our results allow us to investigate the response of surface-dwelling planktic foraminifera to increases in atmospheric carbon dioxide. We find that increased anthropogenic carbon dioxide levels led to basin wide reductions in size normalized weights by modulating foraminiferal calcification. Carbon (ή13C) and boron (ή11B) isotopic compositions also indicate the increasing influence of fossil fuel derived carbon dioxide and decreasing pH, respectively. Alkenone concentrations and test accumulation rates indicate that warming and changes in biological productivity are insufficient to offset acidification effects. We suggest that further increases in atmospheric carbon dioxide will drive ongoing reductions in marine biogenic calcification in the Mediterranean Sea.Publisher PDFPeer reviewe

    Relevance of the eastern African coastal forest for early hominin biogeography

    Get PDF
    The influence of climate change on hominin evolution is much debated. Two issues hamper our under- standing of this process: the limited hominin fossil record, and incomplete knowledge about hominin spatial occupation of Africa. Here, we analyze the presently known hominin fossil distribution pattern and explore the potential geographic distribution of hominins between ~4.5 and ~2.5 Ma. We focus on assessing the relevance of the Coastal Forest of Eastern Africa (CFEA) along the Indian Ocean as a core area for early hominin evolution. Based on biogeographic-phylogeographic data we propose the coastal refuge hypoth- esis: the CFEA provided a refugium for early hominins in periods of variable climate and strong seasonality during eccentricity maxima. From this refuge, evolved species could disperse inland (e.g. to rift basins) via vegetated humid corridors, whenever onset of stable climate periods with low seasonality during eccen- tricity minima allowed expansion out of the coastal enclave. We develop a conceptual model in time and space, comparing predictions with climatic and hominin fossil records. The results imply that: 1) between ~4.5 and 3 Ma, ongoing (mostly anagenetic) hominin evolution occurred in the CFEA, punctuated by inland dispersal events at ~4.4, 4.2, 3.8, 3.5, and 3.2 Ma; 2) before ~3 Ma, the Afar Basin was a (sub)core area often connected to and relatively similar to the CFEA, while other inland areas were more or less marginal for early hominin habitation; 3) after ~3 Ma, Northern Hemisphere Glaciation exerted strong influence by causing latitudinal contraction of the CFEA, leading to habitat fragmentation, isolation of hominin populations and possible cladogenetic evolution. A major challenge for the coastal refuge model is the fact that at present, no (hominin) fossils are known from the CFEA. We consider how this can be explained, and possibly overcome with targeted search efforts. Furthermore we discuss how the model can be tested, e.g. with molecular phylogeography approaches, and used to predict new hominin fossil locations. With this study, we hope to contribute a fresh perspective to the climate-evolution debate, emphasizing the role of climatic stability, length of dry season and vegetation cover to facilitate connectivity between hominin core and marginal habitats

    Revised age and stratigraphy of the classic Homo erectus-bearing succession at Trinil (Java, Indonesia)

    Get PDF
    Obtaining accurate age control for fossils found on Java (Indonesia) has been and remains challenging due to geochronologic and stratigraphic uncertainties. In the 1890s, Dubois excavated numerous faunal fossils—including the first remains of Homo erectus—in sediments exposed along the Solo River at Trinil. Since then, various, and often contradictory age estimates have been proposed for the Trinil site and its fossils. However, the age of the fossil-bearing layers and the fossil assemblage remains inconclusive. This study constructs a chronostratigraphic framework for the Trinil site by documenting new stratigraphic sections and test pits, and by applying 40Ar/39Ar, paleomagnetic, and luminescence (pIRIR290) dating methods. Our study identifies two distinct, highly fossiliferous channel fills at the Trinil site. The stratigraphically lower Bone-Bearing Channel 1 (BBC-1) dates to 830–773 ka, while Bone-Bearing Channel 2 (BBC-2) is substantially younger with a maximum age of 450 ± 110 ka and an inferred minimum age of 430 ± 50 ka. Furthermore, significantly younger T2 terrace deposits are present at similar low elevations as BBC-1 and BBC-2. Our results demonstrate the presence of Early and Middle Pleistocene, and potentially even late Middle to Late Pleistocene fossiliferous sediments within the historical excavation area, suggesting that Dubois excavated fossils from at least three highly fossiliferous units with different ages. Moreover, evidence for reworking suggests that material found in the fossil-rich strata may originate from older deposits, introducing an additional source of temporal heterogeneity in the Trinil fossil assemblage. This challenges the current assumption that the Trinil H.K. fauna –which includes Homo erectus-is a homogeneous biostratigraphic unit. Furthermore, this scenario might explain why the Trinil skullcap collected by Dubois is tentatively grouped with Homo erectus fossils from Early Pleistocene sediments at Sangiran, while Trinil Femur I shares affinities with hominin fossils of Late Pleistocene age

    ICDP workshop on the Lake Tanganyika Scientific Drilling Project: a late Miocene–present record of climate, rifting, and ecosystem evolution from the world's oldest tropical lake

    Get PDF
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∌10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations.© Author(s) 2020. This open access article is distributed under the Creative Commons Attribution 4.0 License

    Carbon and oxygen isotope data for carbonates and benthic foraminifers from ODP Hole 113-689B

    No full text
    At Ocean Drilling Program Site 689 (Maud Rise, Southern Ocean), d18O records of fine-fraction bulk carbonate and benthic foraminifers indicate that accelerated climate cooling took place following at least two closely spaced early late Eocene extraterrestrial impact events. A simultaneous surface-water productivity increase, as interpreted from d13C data, is explained by enhanced water-column mixing due to increased latitudinal temperature gradients. These isotope data appear to be in concert with organic-walled dinoflagellate-cyst records across the same microkrystite-bearing impact-ejecta layer in the mid-latitude Massignano section (central Italy). In particular, the strong abundance increase of Thalassiphora pelagica is interpreted to indicate cooling or increased productivity at Massignano. Because impact-induced cooling processes are active on time scales of a few years at most, the estimated 100 k.y. duration of the cooling event appears to be too long to be explained by impact scenarios alone. This implies that a feedback mechanism, such as a global albedo increase due to extended snow and ice cover, may have sustained impact-induced cooling for a longer time after the impacts
    corecore