371 research outputs found

    Neutrino Factories and the "Magic" Baseline

    Get PDF
    We show that for a neutrino factory baseline of L∌7300km−7600kmL \sim 7300 km - 7 600 km a ``clean'' measurement of sin⁥22Ξ13\sin^2 2 \theta_{13} becomes possible, which is almost unaffected by parameter degeneracies. We call this baseline "magic" baseline, because its length only depends on the matter density profile. For a complete analysis, we demonstrate that the combination of the magic baseline with a baseline of 3000 km is the ideal solution to perform equally well for the sin⁥22Ξ13\sin^2 2 \theta_{13}, sign of Δm312\Delta m_{31}^2, and CP violation sensitivities. Especially, this combination can very successfully resolve parameter degeneracies even below sin⁥22Ξ13<10−4\sin^2 2 \theta_{13} < 10^{-4}.Comment: Minor changes, final version to appear in PRD, 4 pages, 3 figures, RevTe

    Effects of new physics in neutrino oscillations in matter

    Get PDF
    A new flavor changing electron neutrino interaction with matter would always dominate the nu_e oscillation probability at sufficiently high neutrino energies. Being suppressed by theta_{13}, the energy scale at which the new effect starts to be relevant may be within the reach of realistic experiments, where the peculiar dependence of the signal with energy could give rise to a clear signature in the nu_e --> nu_tau channel. The latter could be observed by means of a coarse large magnetized detector by exploiting tau --> mu decays. We discuss the possibility of identifying or constraining such effects with a high energy neutrino factory. We also comment on the model independent limits on them.Comment: 11 pages, 5 figure

    The role of matter density uncertainties in the analysis of future neutrino factory experiments

    Full text link
    Matter density uncertainties can affect the measurements of the neutrino oscillation parameters at future neutrino factory experiments, such as the measurements of the mixing parameters Ξ13\theta_{13} and \deltacp. We compare different matter density uncertainty models and discuss the possibility to include the matter density uncertainties in a complete statistical analysis. Furthermore, we systematically study in which measurements and where in the parameter space matter density uncertainties are most relevant. We illustrate this discussion with examples that show the effects as functions of different magnitudes of the matter density uncertainties. We find that matter density uncertainties are especially relevant for large \stheta \gtrsim 10^{-3}. Within the KamLAND-allowed range, they are most relevant for the precision measurements of \stheta and \deltacp, but less relevant for ``binary'' measurements, such as for the sign of \ldm, the sensitivity to \stheta, or the sensitivity to maximal CP violation. In addition, we demonstrate that knowing the matter density along a specific baseline better than to about 1% precision means that all measurements will become almost independent of the matter density uncertainties.Comment: 21 pages, 7 figures, LaTeX. Final version to be published in Phys. Rev.

    Non-standard Hamiltonian effects on neutrino oscillations

    Full text link
    We investigate non-standard Hamiltonian effects on neutrino oscillations, which are effective additional contributions to the vacuum or matter Hamiltonian. Since these effects can enter in either flavor or mass basis, we develop an understanding of the difference between these bases representing the underlying theoretical model. In particular, the simplest of these effects are classified as ``pure'' flavor or mass effects, where the appearance of such a ``pure'' effect can be quite plausible as a leading non-standard contribution from theoretical models. Compared to earlier studies investigating particular effects, we aim for a top-down classification of a possible ``new physics'' signature at future long-baseline neutrino oscillation precision experiments. We develop a general framework for such effects with two neutrino flavors and discuss the extension to three neutrino flavors, as well as we demonstrate the challenges for a neutrino factory to distinguish the theoretical origin of these effects with a numerical example. We find how the precision measurement of neutrino oscillation parameters can be altered by non-standard effects alone (not including non-standard interactions in the creation and detection processes) and that the non-standard effects on Hamiltonian level can be distinguished from other non-standard effects (such as neutrino decoherence and decay) if we consider specific imprint of the effects on the energy spectra of several different oscillation channels at a neutrino factory.Comment: 30 pages, 6 figures, LaTeX, final version, published in Eur.Phys.J.

    Confusing non-standard neutrino interactions with oscillations at a neutrino factory

    Get PDF
    Most neutrino mass theories contain non-standard interactions (NSI) of neutrinos which can be either non-universal (NU) or flavor-changing (FC). We study the impact of such interactions on the determination of neutrino mixing parameters at a neutrino factory using the so-called ``golden channels'' \pnu{e}\to\pnu{\mu} for the measurement of \theta_{13}. We show that a certain combination of FC interactions in neutrino source and earth matter can give exactly the same signal as oscillations arising due to \theta_{13}. This implies that information about \theta_{13} can only be obtained if bounds on NSI are available. Taking into account the existing bounds on FC interactions, this leads to a drastic loss in sensitivity in \theta_{13}, at least two orders of magnitude. A near detector at a neutrino factory offers the possibility to obtain stringent bounds on some NSI parameters. Such near site detector constitutes an essential ingredient of a neutrino factory and a necessary step towards the determination of \theta_{13} and subsequent study of leptonic CP violation.Comment: 23 pages, 5 figures, improved version, accepted for publication in Phs. Rev. D, references adde

    Renormalization Group Evolution of Dirac Neutrino Masses

    Full text link
    There are good reasons why neutrinos could be Majorana particles, but there exist also a number of very good reasons why neutrinos could have Dirac masses. The latter option deserves more attention and we derive therefore analytic expressions describing the renormalization group evolution of mixing angles and of the CP phase for Dirac neutrinos. Radiative corrections to leptonic mixings are in this case enhanced compared to the quark mixings because the hierarchy of neutrino masses is milder and because the mixing angles are larger. The renormalization group effects are compared to the precision of current and future neutrino experiments. We find that, in the MSSM framework, radiative corrections of the mixing angles are for large \tan\beta comparable to the precision of future experiments.Comment: 19 pages, 5 figures; error in eq. 8 corrected, references adde

    Measurement Near Threshold of 9-Be(3-He, Pi) to the A = 12 Isobaric Triplet by Recoil Detection

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Atmospheric Neutrino Oscillations and New Physics

    Get PDF
    We study the robustness of the determination of the neutrino masses and mixing from the analysis of atmospheric and K2K data under the presence of different forms of phenomenologically allowed new physics in the nu_mu--nu_tau sector. We focus on vector and tensor-like new physics interactions which allow us to treat, in a model independent way, effects due to the violation of the equivalence principle, violations of the Lorentz invariance both CPT conserving and CPT violating, non-universal couplings to a torsion field and non-standard neutrino interactions with matter. We perform a global analysis of the full atmospheric data from SKI together with long baseline K2K data in the presence of nu_mu -> nu_tau transitions driven by neutrino masses and mixing together with sub-dominant effects due to these forms of new physics. We show that within the present degree of experimental precision, the extracted values of masses and mixing are robust under those effects and we derive the upper bounds on the possible strength of these new interactions in the nu_mu--nu_tau sector.Comment: 22 pages, LaTeX file using RevTEX4, 5 figures and 4 tables include

    Distribution of Eigenvalues for the Modular Group

    Full text link
    The two-point correlation function of energy levels for free motion on the modular domain, both with periodic and Dirichlet boundary conditions, are explicitly computed using a generalization of the Hardy-Littlewood method. It is shown that ion the limit of small separations they show an uncorrelated behaviour and agree with the Poisson distribution but they have prominent number-theoretical oscillations at larger scale. The results agree well with numerical simulations.Comment: 72 pages, Latex, the fiogures mentioned in the text are not vital, but can be obtained upon request from the first Autho
    • 

    corecore