16,026 research outputs found

    Ontogeny of purinergic receptor-regulated Ca2+ signaling in mouse cortical collecting duct epithelium

    Get PDF
    Changes in ATP-induced increase in {[}Ca2+], during collecting duct ontogeny were studied in primary monolayer cultures of mouse ureteric bud (UB) and cortical collecting duct (CCD) cells by Fura-PE3 fluorescence ratio imaging. In UB (embryonic day E14 and postnatal day P1) the ATIP-stimulated increase (EC50 approximate to 1 muM) in fluorescence ratio (DeltaR(ATP)) was independent of extracellular Ca2+ and insensitive to the P2 purinoceptor-antagonist suramin (1 mM). From day P7 onward when CCD morphogenesis had been completed DeltaR(ATP) increased and became dependent on extracellular Ca2+. This ATP-stimulated Ca2+ entry into CCD cells was non-capacitative and suramin (11 mM)insensitive, but sensitive to nifedipine (30 muM) and enhanced by Bay K8644 (15 muM), a blocker and an agonist of L-type Ca2+ channels, respectively. Quantitative RT-PCR demonstrated similar mRNA expression of L-type Ca2+ channel alpha1-subunit, P2Y(1), P2Y(2), and P2X(4b) purinoceptors in UB and CCD monolayers while the abundance of P2X(4) mRNA increased with CCD morphogenesis. In conclusion, both embryonic and postnatal cells express probably P2Y(2)-stimulated Ca2+ release from intracellular stores. With development, the CCD epithelium acquires ATP-stimulated Ca2+ entry via L-type Ca2+ channels. This pathway might by mediated by the increasing expression of P2X(4)-receptors resulting in an increasing ATP-dependent membrane depolarization and activation of L-type Ca2+ channels. Copyright (C) 2002 S. Karger AG, Basel

    Electrostatic Steering Accelerates C3d:CR2 Association.

    Get PDF
    Electrostatic effects are ubiquitous in protein interactions and are found to be pervasive in the complement system as well. The interaction between complement fragment C3d and complement receptor 2 (CR2) has evolved to become a link between innate and adaptive immunity. Electrostatic interactions have been suggested to be the driving factor for the association of the C3d:CR2 complex. In this study, we investigate the effects of ionic strength and mutagenesis on the association of C3d:CR2 through Brownian dynamics simulations. We demonstrate that the formation of the C3d:CR2 complex is ionic strength-dependent, suggesting the presence of long-range electrostatic steering that accelerates the complex formation. Electrostatic steering occurs through the interaction of an acidic surface patch in C3d and the positively charged CR2 and is supported by the effects of mutations within the acidic patch of C3d that slow or diminish association. Our data are in agreement with previous experimental mutagenesis and binding studies and computational studies. Although the C3d acidic patch may be locally destabilizing because of unfavorable Coulombic interactions of like charges, it contributes to the acceleration of association. Therefore, acceleration of function through electrostatic steering takes precedence to stability. The site of interaction between C3d and CR2 has been the target for delivery of CR2-bound nanoparticle, antibody, and small molecule biomarkers, as well as potential therapeutics. A detailed knowledge of the physicochemical basis of C3d:CR2 association may be necessary to accelerate biomarker and drug discovery efforts

    Ultrafast Insulator-Metal Phase Transition in VO2 Studied by Multiterahertz Spectroscopy

    Get PDF
    The ultrafast photoinduced insulator-metal transition in VO2 is studied at different temperatures and excitation fluences using multi-THz probe pulses. The spectrally resolved mid-infrared response allows us to trace separately the dynamics of lattice and electronic degrees of freedom with a time resolution of 40 fs. The critical fluence of the optical pump pulse which drives the system into a long-lived metallic state is found to increase with decreasing temperature. Under all measurement conditions we observe a modulation of the eigenfrequencies of the optical phonon modes induced by their anharmonic coupling to the coherent wave packet motion of V-V dimers at 6.1 THz. Furthermore, we find a weak quadratic coupling of the electronic response to the coherent dimer oscillation resulting in a modulation of the electronic conductivity at twice the frequency of the wave packet motion. The findings are discussed in the framework of a qualitative model based on an approximation of local photoexcitation of the vanadium dimers from the insulating state.Comment: 10 pages, 8 figures submitted to Physical Review

    Neutron star properties with relativistic equations of state

    Get PDF
    We study the properties of neutron stars adopting relativistic equations of state of neutron star matter, calculated in the framework of the relativistic Brueckner-Hartree-Fock approximation for electrically charge neutral neutron star matter in beta-equilibrium. For higher densities more baryons (hyperons etc.) are included by means of the relativistic Hartree- or Hartree-Fock approximation. The special features of the different approximations and compositions are discussed in detail. Besides standard neutron star properties special emphasis is put on the limiting periods of neutron stars, for which the Kepler criterion and gravitation-reaction instabilities are considered. Furthermore the cooling behaviour of neutron stars is investigated, too. For comparison we give also the outcome for some nonrelativistic equations of state.Comment: 43 pages, 22 ps-figures, to be published in the International Journal of Modern Physics

    Real-time observation of interfering crystal electrons in high-harmonic generation

    Full text link
    Accelerating and colliding particles has been a key strategy to explore the texture of matter. Strong lightwaves can control and recollide electronic wavepackets, generating high-harmonic (HH) radiation which encodes the structure and dynamics of atoms and molecules and lays the foundations of attosecond science. The recent discovery of HH generation in bulk solids combines the idea of ultrafast acceleration with complex condensed matter systems and sparks hope for compact solid-state attosecond sources and electronics at optical frequencies. Yet the underlying quantum motion has not been observable in real time. Here, we study HH generation in a bulk solid directly in the time-domain, revealing a new quality of strong-field excitations in the crystal. Unlike established atomic sources, our solid emits HH radiation as a sequence of subcycle bursts which coincide temporally with the field crests of one polarity of the driving terahertz waveform. We show that these features hallmark a novel non-perturbative quantum interference involving electrons from multiple valence bands. The results identify key mechanisms for future solid-state attosecond sources and next-generation lightwave electronics. The new quantum interference justifies the hope for all-optical bandstructure reconstruction and lays the foundation for possible quantum logic operations at optical clock rates

    Delta Self-Consistent Field as a method to obtain potential energy surfaces of excited molecules on surfaces

    Get PDF
    We present a modification of the Δ\DeltaSCF method of calculating energies of excited states, in order to make it applicable to resonance calculations of molecules adsorbed on metal surfaces, where the molecular orbitals are highly hybridized. The Δ\DeltaSCF approximation is a density functional method closely resembling standard density functional theory (DFT), the only difference being that in Δ\DeltaSCF one or more electrons are placed in higher lying Kohn-Sham orbitals, instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground state energy within standard DFT. We extend the Δ\DeltaSCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can be estimated. The method is applied to N2_2, CO and NO adsorbed on different metallic surfaces and compared to ordinary Δ\DeltaSCF without our modification, spatially constrained DFT and inverse-photoemission spectroscopy (IPES) measurements. This comparison shows that the modified Δ\DeltaSCF method gives results in close agreement with experiment, significantly closer than the comparable methods. For N2_2 adsorbed on ruthenium (0001) we map out a 2-dimensional part of the potential energy surfaces in the ground state and the 2π\pi-resonance. Finally we compare the Δ\DeltaSCF approach on gas-phase N2_2 and CO, to higher accuracy methods. Excitation energies are approximated with accuracy close to that of time-dependent density functional theory, and we see very good agreement in the minimum shift of the potential energy surfaces in the excited state compared to the ground state.Comment: 11 pages, 7 figure

    First-principles investigation of Ag-Cu alloy surfaces in an oxidizing environment

    Get PDF
    In this paper we investigate by means of first-principles density functional theory calculations the (111) surface of the Ag-Cu alloy under varying conditions of pressure of the surrounding oxygen atmosphere and temperature. This alloy has been recently proposed as a catalyst with improved selectivity for ethylene epoxidation with respect to pure silver, the catalyst commonly used in industrial applications. Here we show that the presence of oxygen leads to copper segregation to the surface. Considering the surface free energy as a function of the surface composition, we construct the convex hull to investigate the stability of various surface structures. By including the dependence of the free surface energy on the oxygen chemical potential, we are able compute the phase diagram of the alloy as a function of temperature, pressure and surface composition. We find that, at temperature and pressure typically used in ethylene epoxidation, a number of structures can be present on the surface of the alloy, including clean Ag(111), thin layers of copper oxide and thick oxide-like structures. These results are consistent with, and help explain, recent experimental results.Comment: 10 pages, 6 figure

    Management Choices: Native, Interseeded Native, or Tame Pastures

    Get PDF
    The objective of the 3-year grazing study was reported in this bulletin was to develop effective, economical, and sustained beef cattle production on native and tame pastures with and without energy supplementation. The three pasture systems studied were native range, interseeded native range, and a tame pasture series
    • …
    corecore