10 research outputs found

    Eye Tracking in Dogs: Achievements and Challenges

    No full text
    In this article, we review eye-tracking studies with dogs (Canis familiaris) with a threefold goal; we highlight the achievements in the field of canine perception and cognition using eye tracking, then discuss the challenges that arise in the application of a technology that has been developed in human psychophysics, and finally propose new avenues in dog eye-tracking research. For the first goal, we present studies that investigated dogs\u27 perception of humans, mainly faces, but also hands, gaze, emotions, communicative signals, goal-directed movements, and social interactions, as well as the perception of animations representing possible and impossible physical processes and animacy cues. We then discuss the present challenges of eye tracking with dogs, like doubtful picture-object equivasuggest possible improvements and solutions for these problems in order to achieve better stimulus and data quality. Finally, we propose the use of dynamic stimuli, pupillometry, arrival time analyses, mobile eye tracking, and combinations with behavioral and neuroimaging methods to further advance canine research and open up new scientific fields in this highly dynamic branch of comparative cognition

    Dogs Rely On Visual Cues Rather Than On Effector-Specific Movement Representations to Predict Human Action Targets

    No full text
    The ability to predict others\u27 actions is one of the main pillars of social cognition. We investigated the processes underlying this ability by pitting motor representations of the observed movements against visual familiarity. In two pre-registered eye-tracking experiments, we measured the gaze arrival times of 16 dogs (Canis familiaris) who observed videos of a human or a conspecific executing the same goal-directed actions. On the first trial, when the human agent performed human-typical movements outside dogs\u27 specific motor repertoire, dogs\u27 gaze arrived at the target object anticipatorily (i.e., before the human touched the target object). When the agent was a conspecific, dogs\u27 gaze arrived to the target object reactively (i.e., upon or after touch). When the human agent performed unusual movements more closely related to the dogs\u27 motor possibilities (e.g., crawling instead of walking), dogs\u27 gaze arrival times were intermediate between the other two conditions. In a replication experiment, with slightly different stimuli, dogs\u27 looks to the target object were neither significantly predictive nor reactive, irrespective of the agent. However, when including looks at the target object that were not preceded by looks to the agents, on average dogs looked anticipatorily and sooner at the human agent\u27s action target than at the conspecific\u27s. Looking times and pupil size analyses suggest that the dogs\u27 attention was captured more by the dog agent. These results suggest that visual familiarity with the observed action and saliency of the agent had a stronger influence on the dogs\u27 looking behaviour than effector-specific movement representations in anticipating action targets

    Functionally analogous body- and animacy-responsive areas are present in the dog (Canis familiaris) and human occipito-temporal lobe

    No full text
    Comparing the neural correlates of socio-cognitive skills across species provides insights into the evolution of the social brain and has revealed face- and body-sensitive regions in the primate temporal lobe. Although from a different lineage, dogs share convergent visuo-cognitive skills with humans and a temporal lobe which evolved independently in carnivorans. We investigated the neural correlates of face and body perception in dogs (N = 15) and humans (N = 40) using functional MRI. Combining univariate and multivariate analysis approaches, we found functionally analogous occipito-temporal regions involved in the perception of animate entities and bodies in both species and face-sensitive regions in humans. Though unpredicted, we also observed neural representations of faces compared to inanimate objects, and dog compared to human bodies in dog olfactory regions. These findings shed light on the evolutionary foundations of human and dog social cognition and the predominant role of the temporal lobe

    A novel feeding platform design for behavioral research on wild Tanimbar corellas (Cacatua goffiniana)

    No full text
    The study of animal behaviour and cognition would not be complete without investigations of wild, free-ranging individuals in their natural environment. However, direct observations of species living in dense habitats can be challenging, leading many studies to focus on attracting target species to pre-selected, monitored locations baited with food. So far, researchers have rarely applied this approach to studying wild psittacines - an avian group of high scientific interest due to their advanced cognitive skills and conservation threats. We developed hoistable feeding platforms and tested their suitability for reliably attracting groups of wild Tanimbar corellas (hereafter: Goffins), opportunistic feeding generalists well-known for their advanced cognitive skills. To this end, we recorded the visitation rates of free-ranging groups at feeding platforms temporarily baited with dry corn. Moreover, we investigated the effects of several weather-related measures, the temporal distribution of foraging activity, and the effect of conspecific contact calls (playback stimulus). The results indicate that Goffins accepted the feeding platforms and reliably aggregated within their natural daily foraging bouts. While group size during visitation bouts depended on rainfall and resource abundance, platforms were still regularly visited by fewer, possibly locally residing individuals. These results provide the first systematic investigation of the temporal distribution and social dynamics of foraging bouts in wild Goffins. This study presents a novel method for reliably attracting wild opportunistic feeding generalist psittacines to a standardised, monitored location. It provides a suitable approach for observing foraging aggregations and, in the future, testing the problem-solving abilities of free-ranging Goffins in their natural habitat

    Do dogs preferentially encode the identity of the target object or the location of others\u27 actions?

    No full text
    The ability to make sense of and predict others\u27 actions is foundational for many socio-cognitive abilities. Dogs (Canis familiaris) constitute interesting comparative models for the study of action perception due to their marked sensitivity to human actions. We tested companion dogs (N = 21) in two screen-based eye-tracking experiments, adopting a task previously used with human infants and apes, to assess which aspects of an agent\u27s action dogs consider relevant to the agent\u27s underlying intentions. An agent was shown repeatedly acting upon the same one of two objects, positioned in the same location. We then presented the objects in swapped locations and the agent approached the objects centrally (Experiment 1) or the old object in the new location or the new object in the old location (Experiment 2). Dogs\u27 anticipatory fixations and looking times did not reflect an expectation that agents should have continued approaching the same object nor the same location as witnessed during the brief familiarization phase; this contrasts with some findings with infants and apes, but aligns with findings in younger infants before they have sufficient motor experience with the observed action. However, dogs\u27 pupil dilation and latency to make an anticipatory fixation suggested that, if anything, dogs expected the agents to keep approaching the same location rather than the same object, and their looking times showed sensitivity to the animacy of the agents. We conclude that dogs, lacking motor experience with the observed actions of grasping or kicking performed by a human or inanimate agent, might interpret such actions as directed toward a specific location rather than a specific object. Future research will need to further probe the suitability of anticipatory looking as measure of dogs\u27 socio-cognitive abilities given differences between the visual systems of dogs and primates

    The temporal dependence of exploration on neotic style in birds

    No full text
    Exploration (interacting with objects to gain information) and neophobia (avoiding novelty) are considered independent traits shaped by the socio-ecology of a given species. However, in the literature it is often assumed that neophobia inhibits exploration. Here, we investigate how different approaches to novelty (fast or slow) determine the time at which exploration is likely to occur across a number of species. We presented four corvid and five parrot species with a touchscreen discrimination task in which novel stimuli were occasionally interspersed within the familiar training stimuli. We investigated the likelihood that an animal would choose novelty at different stages of its training and found evidence for a shift in the pattern of exploration, depending on neotic style. The findings suggest that faster approaching individuals explored earlier, whilst animals with long initial approach latencies showed similar amounts of exploration but did so later in training. Age rather than species might have influenced the amount of total exploration, with juveniles exploring more than adults. Neotic style varied consistently only for one species and seems to involve a strong individual component, rather than being a purely species-specific trait. This suggests that variation in behavioural phenotypes within a species may be adaptive.© The Author(s) 201

    Adopt, ignore, or kill? Male poison frogs adjust parental decisions according to their territorial status

    No full text
    Systematic infanticide of unrelated young has been reported in several animal taxa. Particular attention has been given to carnivores and primates, where infanticide is a sexually selected strategy of males to gain increased access to female mating partners. Cannibals must ensure avoiding their own offspring and targeting only unrelated young. Therefore, decision rules are needed to mediate parental and cannibalistic behaviour. Here we show experimentally that male poison frogs adjust their parental responses – care or infanticide – towards unrelated clutches according to their territorial status. Male frogs followed the simple rule ‘care for any clutch’ inside their territory, but immediately switched to cannibalism when establishing a new territory. This demonstrates that simple cognitive rules can mediate complex behaviours such as parental care, and that care and cannibalism are antagonistically linked. Non-parental infanticide is mediated by territorial cues and presumably serves to prevent misdirected care in this poison frog. Our results thus prompt a re-consideration of evolutionary and causal aspects of parental decision making, by suggesting that selective infanticide of unrelated young may generally become adaptive when the risks and costs of misdirected care are high.© The Author(s) 201

    ManyDogs Project: A Big Team Science Approach to Investigating Canine Behavior and Cognition

    No full text
    Dogs have a special place in human history as the first domesticated species and play important roles in many cultures around the world. However, their role in scientific studies has been relatively recent. With a few notable exceptions (e.g., Darwin, Pavlov, Scott, and Fuller), domestic dogs were not commonly the subject of rigorous scientific investigation of behavior until the late 1990s. Although the number of canine science studies has increased dramatically over the last 20 years, most research groups are limited in the inferences they can draw because of the relatively small sample sizes used, along with the exceptional diversity observed in dogs (e.g., breed, geographic location, experience). To this end, we introduce the ManyDogs Project, an international consortium of researchers interested in taking a big team science approach to understanding canine behavioral science. We begin by discussing why studying dogs provides valuable insights into behavior and cognition, evolutionary processes, human health, and applications for animal welfare. We then highlight other big team science projects that have previously been conducted in canine science and emphasize the benefits of our approach. Finally, we introduce the ManyDogs Project and our mission: (a) replicating important findings, (b) investigating moderators that need a large sample size such as breed differences, (c) reaching methodological con-sensus, (d) investigating cross-cultural differences, and (e) setting a standard for replication studies in general. In doing so, we hope to address previous limitations in individual lab studies and previous big team science frameworks to deepen our understanding of canine behavior and cognition

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns (code)

    No full text
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable, with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns, 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12%, and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    No full text
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable, with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns, 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12%, and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide
    corecore