102 research outputs found
Innovative Clinical Training Site for Psychiatric Mental Health Nurse Practitioner Students: Elementary School-Based Group Therapy (Manuscript ID UMHN-2017-0143)
The aim of this clinical training site innovation is to develop accessible pediatric mental health clinical training sites for psychiatric mental health nurse practitioner (PMHNP) students. Mental health services in school settings provide treatment in the child's community and create opportunities for innovation and collaboration with teachers, school counselors, and school psychologists. School settings provide opportunities for early recognition of anxiety symptoms and accessible treatment that can help close the gap in clinical training sites for this population. Mild and moderate symptoms of anxiety often go untreated and may affect academic performance negatively. Cognitive behavioral play therapy is an effective treatment modality provided by PMHNP students and supports the roles of school personnel
Three-points interfacial quadrature for geometrical source terms on nonuniform grids
International audienceThis paper deals with numerical (finite volume) approximations, on nonuniform meshes, for ordinary differential equations with parameter-dependent fields. Appropriate discretizations are constructed over the space of parameters, in order to guarantee the consistency in presence of variable cells' size, for which -error estimates, , are proven. Besides, a suitable notion of (weak) regularity for nonuniform meshes is introduced in the most general case, to compensate possibly reduced consistency conditions, and the optimality of the convergence rates with respect to the regularity assumptions on the problem's data is precisely discussed. This analysis attempts to provide a basic theoretical framework for the numerical simulation on unstructured grids (also generated by adaptive algorithms) of a wide class of mathematical models for real systems (geophysical flows, biological and chemical processes, population dynamics)
Low energy and dynamical properties of a single hole in the t-Jz model
We review in details a recently proposed technique to extract information
about dynamical correlation functions of many-body hamiltonians with a few
Lanczos iterations and without the limitation of finite size. We apply this
technique to understand the low energy properties and the dynamical spectral
weight of a simple model describing the motion of a single hole in a quantum
antiferromagnet: the model in two spatial dimension and for a double
chain lattice. The simplicity of the model allows us a well controlled
numerical solution, especially for the two chain case. Contrary to previous
approximations we have found that the single hole ground state in the infinite
system is continuously connected with the Nagaoka fully polarized state for
. Analogously we have obtained an accurate determination of the
dynamical spectral weight relevant for photoemission experiments. For
an argument is given that the spectral weight vanishes at the Nagaoka energy
faster than any power law, as supported also by a clear numerical evidence. It
is also shown that spin charge decoupling is an exact property for a single
hole in the Bethe lattice but does not apply to the more realistic lattices
where the hole can describe closed loop paths.Comment: RevTex 3.0, 40 pages + 16 Figures in one file self-extracting, to
appear in Phys. Rev
Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films
The influence of uncorrelated (nonmagnetic) overlayers on the magnetic
properties of thin itinerant-electron films is investigated within the
single-band Hubbard model. The Coulomb correlation between the electrons in the
ferromagnetic layers is treated by using the spectral density approach (SDA).
It is found that the presence of nonmagnetic layers has a strong effect on the
magnetic properties of thin films. The Curie temperatures of very thin films
are modified by the uncorrelated overlayers. The quasiparticle density of
states is used to analyze the results. In addition, the coupling between the
ferromagnetic layers and the nonmagnetic layers is discussed in detail. The
coupling depends on the band occupation of the nonmagnetic layers, while it is
almost independent of the number of the nonmagnetic layers. The induced
polarization in the nonmagnetic layers shows a long-range decreasing
oscillatory behavior and it depends on the coupling between ferromagnetic and
nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see:
http://orion.physik.hu-berlin.d
- …