8,028 research outputs found
Cumulant expansion of the periodic Anderson model in infinite dimension
The diagrammatic cumulant expansion for the periodic Anderson model with
infinite Coulomb repulsion () is considered here for an hypercubic
lattice of infinite dimension (). The same type of simplifications
obtained by Metzner for the cumulant expansion of the Hubbard model in the
limit of , are shown to be also valid for the periodic Anderson
model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical
and General (1997
Compressibility of the Two-Dimensional infinite-U Hubbard Model
We study the interactions between the coherent quasiparticles and the
incoherent Mott-Hubbard excitations and their effects on the low energy
properties in the Hubbard model. Within the framework of a
systematic large-N expansion, these effects first occur in the next to leading
order in 1/N. We calculate the scattering phase shift and the free energy, and
determine the quasiparticle weight Z, mass renormalization, and the
compressibility. It is found that the compressibility is strongly renormalized
and diverges at a critical doping . We discuss the nature
of this zero-temperature phase transition and its connection to phase
separation and superconductivity.Comment: 4 pages, 3 eps figures, final version to appear in Phys. Rev. Let
Exact Solution of a Electron System Combining Two Different t-J Models
A new strongly correlated electron model is presented. This is formed by two
types of sites: one where double occupancy is forbidden, as in the t-J model,
and the other where double occupancy is allowed but vacancy is not allowed, as
an inverse t-J model. The Hamiltonian shows nearest and next-to-nearest
neighbour interactions and it is solved by means of a modified algebraic nested
Bethe Ansatz. The number of sites where vacancy is not allowed, may be treated
as a new parameter if the model is looked at as a t-J model with impurities.
The ground and excited states are described in the thermodynamic limit.Comment: Some corrections and references added. To be published in J. Phys.
Improved Mean-Field Scheme for the Hubbard Model
Ground state energies and on-site density-density correlations are calculated
for the 1-D Hubbard model using a linear combination of the Hubbard projection
operators. The mean-field coefficients in the resulting linearized Equations of
Motion (EOM) depend on both one-particle static expectation values as well as
static two-particle correlations. To test the model, the one particle
expectation values are determined self-consistently while using Lanczos
determined values for the two particle correlation terms. Ground state energies
and on-site density-density correlations are then compared as a function of
to the corresponding Lanczos values on a 12 site Hubbard chain for 1/2 and 5/12
fillings. To further demonstrate the validity of the technique, the static
correlation functions are also calculated using a similar EOM approach, which
ignores the effective vertex corrections for this problem, and compares those
results as well for a 1/2 filled chain. These results show marked improvement
over standard mean-field techniques.Comment: 10 pages, 3 figures, text and figures as one postscript file -- does
not need to be "TeX-ed". LA-UR-94-294
Variational cluster approach to correlated electron systems in low dimensions
A self-energy-functional approach is applied to construct cluster
approximations for correlated lattice models. It turns out that the
cluster-perturbation theory (Senechal et al, PRL 84, 522 (2000)) and the
cellular dynamical mean-field theory (Kotliar et al, PRL 87, 186401 (2001)) are
limiting cases of a more general cluster method. Results for the
one-dimensional Hubbard model are discussed with regard to boundary conditions,
bath degrees of freedom and cluster size.Comment: 4 pages, final version with minor change
Double Time Window Targeting Technique: Real time DMRG dynamics in the PPP model
We present a generalized adaptive time-dependent density matrix
renormalization group (DMRG) scheme, called the {\it double time window
targeting} (DTWT) technique, which gives accurate results with nominal
computational resources, within reasonable computational time. This procedure
originates from the amalgamation of the features of pace keeping DMRG
algorithm, first proposed by Luo {\it et. al}, [Phys.Rev. Lett. {\bf 91},
049701 (2003)], and the time-step targeting (TST) algorithm by Feiguin and
White [Phys. Rev. B {\bf 72}, 020404 (2005)]. Using the DTWT technique, we
study the phenomena of spin-charge separation in conjugated polymers (materials
for molecular electronics and spintronics), which have long-range
electron-electron interactions and belong to the class of strongly correlated
low-dimensional many-body systems. The issue of real time dynamics within the
Pariser-Parr-Pople (PPP) model which includes long-range electron correlations
has not been addressed in the literature so far. The present study on PPP
chains has revealed that, (i) long-range electron correlations enable both the
charge and spin degree of freedom of the electron, to propagate faster in the
PPP model compared to Hubbard model, (ii) for standard parameters of the PPP
model as applied to conjugated polymers, the charge velocity is almost twice
that of the spin velocity and, (iii) the simplistic interpretation of
long-range correlations by merely renormalizing the {\it U} value of the
Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP
model.Comment: Final (published) version; 39 pages, 13 figures, 1 table; 2 new
references adde
Realistic Magnetohydrodynamical Simulation of Solar Local Supergranulation
Three-dimensional numerical simulations of solar surface magnetoconvection
using realistic model physics are conducted. The thermal structure of
convective motions into the upper radiative layers of the photosphere, the main
scales of convective cells and the penetration depths of convection are
investigated. We take part of the solar photosphere with size of 60x60 Mm in
horizontal direction and by depth 20 Mm from level of the visible solar
surface. We use a realistic initial model of the Sun and apply equation of
state and opacities of stellar matter. The equations of fully compressible
radiation magnetohydrodynamics with dynamical viscosity and gravity are solved.
We apply: 1) conservative TVD difference scheme for the magnetohydrodynamics,
2) the diffusion approximation for the radiative transfer, 3) dynamical
viscosity from subgrid scale modeling. In simulation we take uniform
two-dimesional grid in gorizontal plane and nonuniform grid in vertical
direction with number of cells 600x600x204. We use 512 processors with
distributed memory multiprocessors on supercomputer MVS-100k in the Joint
Computational Centre of the Russian Academy of Sciences.Comment: 6 pages, 5 figures, submitted to the proceedings of the GONG 2008 /
SOHO XXI conferenc
All Coronal Loops are the Same: Evidence to the Contrary
The 1998 April 20 spectral line data from the Coronal Diagnostics
Spectrometer (CDS) on the {\it Solar and Heliospheric Observatory} (\SOHO)
shows a coronal loop on the solar limb. Our original analysis of these data
showed that the plasma was multi-thermal, both along the length of the loop and
along the line of sight. However, more recent results by other authors indicate
that background subtraction might change these conclusions, so we consider the
effect of background subtraction on our analysis. We show Emission Measure (EM)
Loci plots of three representative pixels: loop apex, upper leg, and lower leg.
Comparisons of the original and background-subtracted intensities show that the
EM Loci are more tightly clustered after background subtraction, but that the
plasma is still not well represented by an isothermal model. Our results taken
together with those of other authors indicate that a variety of temperature
structures may be present within loops.Comment: Accepted for publication in ApJ Letter
sgTarget: a target selection resource for structural genomics
sgTarget () is a web-based resource to aid the selection and prioritization of candidate proteins for structure determination. The system annotates user submitted gene or protein sequences, identifying sequence families with no homologues of known structure, and characterizing each protein according to a range of physicochemical properties that may affect its expression, solubility and likelihood to crystallize. Summaries of these analyses are available for individual sequences, as well as whole datasets. This type of analysis enables structural biologists to iteratively select targets from their genomic sequences of interest and according to their research needs. All sequence datasets submitted to sgTarget are available for users to select and rank using their choice of criteria. sgTarget was developed to support individual laboratories collaborating in structural and functional genomics projects and should be valuable to structural biologists wishing to employ the wealth of available genome sequences in their structural quests
- …