83 research outputs found
Mathematical and computational models of drug transport in tumours
The ability to predict how far a drug will penetrate into the tumour microenvironment within its pharmacokinetic (PK) lifespan would provide valuable information about therapeutic response. As the PK profile is directly related to the route and schedule of drug administration, an in silico tool that can predict the drug administration schedule that results in optimal drug delivery to tumours would streamline clinical trial design. This paper investigates the application of mathematical and computational modelling techniques to help improve our understanding of the fundamental mechanisms underlying drug delivery, and compares the performance of a simple model with more complex approaches. Three models of drug transport are developed, all based on the same drug binding model and parametrized by bespoke in vitro experiments. Their predictions, compared for a ‘tumour cord’ geometry, are qualitatively and quantitatively similar. We assess the effect of varying the PK profile of the supplied drug, and the binding affinity of the drug to tumour cells, on the concentration of drug reaching cells and the accumulated exposure of cells to drug at arbitrary distances from a supplying blood vessel. This is a contribution towards developing a useful drug transport modelling tool for informing strategies for the treatment of tumour cells which are ‘pharmacokinetically resistant’ to chemotherapeutic strategies
Final NOMAD results on nu_mu->nu_tau and nu_e->nu_tau oscillations including a new search for nu_tau appearance using hadronic tau decays
Results from the nu_tau appearance search in a neutrino beam using the full
NOMAD data sample are reported. A new analysis unifies all the hadronic tau
decays, significantly improving the overall sensitivity of the experiment to
oscillations. The "blind analysis" of all topologies yields no evidence for an
oscillation signal. In the two-family oscillation scenario, this sets a 90%
C.L. allowed region in the sin^2(2theta)-Delta m^2 plane which includes
sin^2(2theta)<3.3 x 10^{-4} at large Delta m^2 and Delta m^2 < 0.7 eV^2/c^4 at
sin^2(2theta)=1. The corresponding contour in the nu_e->nu_tau oscillation
hypothesis results in sin^2(2theta)<1.5 x 10^{-2} at large Delta m^2 and Delta
m^2 < 5.9 eV^2/c^4 at sin^2(2theta)=1. We also derive limits on effective
couplings of the tau lepton to nu_mu or nu_e.Comment: 46 pages, 16 figures, Latex, to appear on Nucl. Phys.
Prediction of Neutrino Fluxes in the NOMAD Experiment
The method developed for the calculation of the flux and composition of the
West Area Neutrino Beam used by NOMAD in its search for neutrino oscillations
is described. The calculation is based on particle production rates computed
using a recent version of FLUKA and modified to take into account the cross
sections measured by the SPY and NA20 experiments. These particles are
propagated through the beam line taking into account the material and magnetic
fields they traverse. The neutrinos produced through their decays are tracked
to the NOMAD detector. The fluxes of the four neutrino flavours at NOMAD are
predicted with an uncertainty of about 8% for nu(mu) and nu(e), 10% for
antinu(mu), and 12% for antinu(e). The energy-dependent uncertainty achieved on
the R(e, mu) prediction needed for a nu(mu)->nu(e) oscillation search ranges
from 4% to 7%, whereas the overall normalization uncertainty on this ratio is
4.2%.Comment: 43 pages, 20 figures. Submitted to Nucl. Phys.
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
Search for nu(mu)-->nu(e) Oscillations in the NOMAD Experiment
We present the results of a search for nu(mu)-->nu(e) oscillations in the
NOMAD experiment at CERN. The experiment looked for the appearance of nu(e) in
a predominantly nu(mu) wide-band neutrino beam at the CERN SPS. No evidence for
oscillations was found. The 90% confidence limits obtained are delta m^2 < 0.4
eV^2 for maximal mixing and sin^2(2theta) < 1.4x10^{-3} for large delta m^2.
This result excludes the LSND allowed region of oscillation parameters with
delta m^2 > 10 eV^2.Comment: 19 pages, 8 figures. Submitted to Phys. Lett.
Search for the exotic resonance in the NOMAD experiment
A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the
NOMAD muon neutrino DIS data is reported. The special background generation
procedure was developed. The proton identification criteria are tuned to
maximize the sensitivity to the Theta signal as a function of xF which allows
to study the Theta production mechanism. We do not observe any evidence for the
Theta state in the NOMAD data. We provide an upper limit on Theta production
rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal
A Study of Strange Particles Produced in Neutrino Neutral Current Interactions in the NOMAD Experiment
Results of a detailed study of strange particle production in neutrino
neutral current interactions are presented using the data from the NOMAD
experiment. Integral yields of neutral strange particles (K0s, Lambda,
Lambda-bar) have been measured. Decays of resonances and heavy hyperons with an
identified K0s or Lambda in the final state have been analyzed. Clear signals
corresponding to K* and Sigma(1385) have been observed. First results on the
measurements of the Lambda polarization in neutral current interactions have
been obtained.Comment: Accepted for publication in Nuclear Physics B as a rapid
communicatio
A study of backward going and in interactions with the NOMAD detector
Backward proton and production has been studied in
interactions with carbon nuclei. Detailed analyses of the momentum
distributions, of the production rates, and of the general features of events
with a backward going particle, have been carried out in order to understand
the mechanism producing these particles. The backward proton data have been
compared with the predictions of the reinteraction and the short range
correlation models.Comment: 29 pages, 14 figures, submitted to Nucl. Phys.
Search for heavy neutrinos mixing with tau neutrinos
We report on a search for heavy neutrinos (\nus) produced in the decay
D_s\to \tau \nus at the SPS proton target followed by the decay \nudecay in
the NOMAD detector. Both decays are expected to occur if \nus is a component
of .\
From the analysis of the data collected during the 1996-1998 runs with
protons on target, a single candidate event consistent with
background expectations was found. This allows to derive an upper limit on the
mixing strength between the heavy neutrino and the tau neutrino in the \nus
mass range from 10 to 190 . Windows between the SN1987a and Big Bang
Nucleosynthesis lower limits and our result are still open for future
experimental searches. The results obtained are used to constrain an
interpretation of the time anomaly observed in the KARMEN1 detector.\Comment: 20 pages, 7 figures, a few comments adde
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
- …