71 research outputs found

    Body-Part Joint Detection and Association via Extended Object Representation

    Full text link
    The detection of human body and its related parts (e.g., face, head or hands) have been intensively studied and greatly improved since the breakthrough of deep CNNs. However, most of these detectors are trained independently, making it a challenging task to associate detected body parts with people. This paper focuses on the problem of joint detection of human body and its corresponding parts. Specifically, we propose a novel extended object representation that integrates the center location offsets of body or its parts, and construct a dense single-stage anchor-based Body-Part Joint Detector (BPJDet). Body-part associations in BPJDet are embedded into the unified representation which contains both the semantic and geometric information. Therefore, BPJDet does not suffer from error-prone association post-matching, and has a better accuracy-speed trade-off. Furthermore, BPJDet can be seamlessly generalized to jointly detect any body part. To verify the effectiveness and superiority of our method, we conduct extensive experiments on the CityPersons, CrowdHuman and BodyHands datasets. The proposed BPJDet detector achieves state-of-the-art association performance on these three benchmarks while maintains high accuracy of detection. Code is in https://github.com/hnuzhy/BPJDet.Comment: accepted by ICME202

    SSDA-YOLO: Semi-supervised Domain Adaptive YOLO for Cross-Domain Object Detection

    Full text link
    Domain adaptive object detection (DAOD) aims to alleviate transfer performance degradation caused by the cross-domain discrepancy. However, most existing DAOD methods are dominated by outdated and computationally intensive two-stage Faster R-CNN, which is not the first choice for industrial applications. In this paper, we propose a novel semi-supervised domain adaptive YOLO (SSDA-YOLO) based method to improve cross-domain detection performance by integrating the compact one-stage stronger detector YOLOv5 with domain adaptation. Specifically, we adapt the knowledge distillation framework with the Mean Teacher model to assist the student model in obtaining instance-level features of the unlabeled target domain. We also utilize the scene style transfer to cross-generate pseudo images in different domains for remedying image-level differences. In addition, an intuitive consistency loss is proposed to further align cross-domain predictions. We evaluate SSDA-YOLO on public benchmarks including PascalVOC, Clipart1k, Cityscapes, and Foggy Cityscapes. Moreover, to verify its generalization, we conduct experiments on yawning detection datasets collected from various real classrooms. The results show considerable improvements of our method in these DAOD tasks, which reveals both the effectiveness of proposed adaptive modules and the urgency of applying more advanced detectors in DAOD. Our code is available on \url{https://github.com/hnuzhy/SSDA-YOLO}.Comment: submitted to CVI

    DirectMHP: Direct 2D Multi-Person Head Pose Estimation with Full-range Angles

    Full text link
    Existing head pose estimation (HPE) mainly focuses on single person with pre-detected frontal heads, which limits their applications in real complex scenarios with multi-persons. We argue that these single HPE methods are fragile and inefficient for Multi-Person Head Pose Estimation (MPHPE) since they rely on the separately trained face detector that cannot generalize well to full viewpoints, especially for heads with invisible face areas. In this paper, we focus on the full-range MPHPE problem, and propose a direct end-to-end simple baseline named DirectMHP. Due to the lack of datasets applicable to the full-range MPHPE, we firstly construct two benchmarks by extracting ground-truth labels for head detection and head orientation from public datasets AGORA and CMU Panoptic. They are rather challenging for having many truncated, occluded, tiny and unevenly illuminated human heads. Then, we design a novel end-to-end trainable one-stage network architecture by joint regressing locations and orientations of multi-head to address the MPHPE problem. Specifically, we regard pose as an auxiliary attribute of the head, and append it after the traditional object prediction. Arbitrary pose representation such as Euler angles is acceptable by this flexible design. Then, we jointly optimize these two tasks by sharing features and utilizing appropriate multiple losses. In this way, our method can implicitly benefit from more surroundings to improve HPE accuracy while maintaining head detection performance. We present comprehensive comparisons with state-of-the-art single HPE methods on public benchmarks, as well as superior baseline results on our constructed MPHPE datasets. Datasets and code are released in https://github.com/hnuzhy/DirectMHP.Comment: 13 page

    Joint Multi-Person Body Detection and Orientation Estimation via One Unified Embedding

    Full text link
    Human body orientation estimation (HBOE) is widely applied into various applications, including robotics, surveillance, pedestrian analysis and autonomous driving. Although many approaches have been addressing the HBOE problem from specific under-controlled scenes to challenging in-the-wild environments, they assume human instances are already detected and take a well cropped sub-image as the input. This setting is less efficient and prone to errors in real application, such as crowds of people. In the paper, we propose a single-stage end-to-end trainable framework for tackling the HBOE problem with multi-persons. By integrating the prediction of bounding boxes and direction angles in one embedding, our method can jointly estimate the location and orientation of all bodies in one image directly. Our key idea is to integrate the HBOE task into the multi-scale anchor channel predictions of persons for concurrently benefiting from engaged intermediate features. Therefore, our approach can naturally adapt to difficult instances involving low resolution and occlusion as in object detection. We validated the efficiency and effectiveness of our method in the recently presented benchmark MEBOW with extensive experiments. Besides, we completed ambiguous instances ignored by the MEBOW dataset, and provided corresponding weak body-orientation labels to keep the integrity and consistency of it for supporting studies toward multi-persons. Our work is available at \url{https://github.com/hnuzhy/JointBDOE}

    StuArt: Individualized Classroom Observation of Students with Automatic Behavior Recognition and Tracking

    Full text link
    Each student matters, but it is hardly for instructors to observe all the students during the courses and provide helps to the needed ones immediately. In this paper, we present StuArt, a novel automatic system designed for the individualized classroom observation, which empowers instructors to concern the learning status of each student. StuArt can recognize five representative student behaviors (hand-raising, standing, sleeping, yawning, and smiling) that are highly related to the engagement and track their variation trends during the course. To protect the privacy of students, all the variation trends are indexed by the seat numbers without any personal identification information. Furthermore, StuArt adopts various user-friendly visualization designs to help instructors quickly understand the individual and whole learning status. Experimental results on real classroom videos have demonstrated the superiority and robustness of the embedded algorithms. We expect our system promoting the development of large-scale individualized guidance of students.Comment: Novel pedagogical approaches in signal processing for K-12 educatio

    BPJDet: Extended Object Representation for Generic Body-Part Joint Detection

    Full text link
    Detection of human body and its parts (e.g., head or hands) has been intensively studied. However, most of these CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its corresponding parts. Specifically, we propose a novel extended object representation integrating center-offsets of body parts, and construct a dense one-stage generic Body-Part Joint Detector (BPJDet). In this way, body-part associations are neatly embedded in a unified object representation containing both semantic and geometric contents. Therefore, we can perform multi-loss optimizations to tackle multi-tasks synergistically. BPJDet does not suffer from error-prone post matching, and keeps a better trade-off between speed and accuracy. Furthermore, BPJDet can be generalized to detect any one or more body parts. To verify the superiority of BPJDet, we conduct experiments on three body-part datasets (CityPersons, CrowdHuman and BodyHands) and one body-parts dataset COCOHumanParts. While keeping high detection accuracy, BPJDet achieves state-of-the-art association performance on all datasets comparing with its counterparts. Besides, we show benefits of advanced body-part association capability by improving performance of two representative downstream applications: accurate crowd head detection and hand contact estimation. Code is released in https://github.com/hnuzhy/BPJDet.Comment: 15 pages. arXiv admin note: text overlap with arXiv:2212.0765

    DCPT: Darkness Clue-Prompted Tracking in Nighttime UAVs

    Full text link
    Existing nighttime unmanned aerial vehicle (UAV) trackers follow an "Enhance-then-Track" architecture - first using a light enhancer to brighten the nighttime video, then employing a daytime tracker to locate the object. This separate enhancement and tracking fails to build an end-to-end trainable vision system. To address this, we propose a novel architecture called Darkness Clue-Prompted Tracking (DCPT) that achieves robust UAV tracking at night by efficiently learning to generate darkness clue prompts. Without a separate enhancer, DCPT directly encodes anti-dark capabilities into prompts using a darkness clue prompter (DCP). Specifically, DCP iteratively learns emphasizing and undermining projections for darkness clues. It then injects these learned visual prompts into a daytime tracker with fixed parameters across transformer layers. Moreover, a gated feature aggregation mechanism enables adaptive fusion between prompts and between prompts and the base model. Extensive experiments show state-of-the-art performance for DCPT on multiple dark scenario benchmarks. The unified end-to-end learning of enhancement and tracking in DCPT enables a more trainable system. The darkness clue prompting efficiently injects anti-dark knowledge without extra modules. Code and models will be released.Comment: Under revie

    Palmitic acid-modified GnRH-Th epitope peptide immunocastration vaccine (W/O/W adjuvant) can effectively ensure the castration and reduce the smelly smell in boars

    Get PDF
    IntroductionRecent studies have demonstrated the effectiveness of Gonadotropin-releasing hormone (GnRH) in inhibiting testicular growth and development in male animals to achieve castration while improving the meat quality of various livestock species, including cattle, sheep, goats, and pigs.MethodsIn this research, a GnRH-Th vaccine was synthesized using the Fmoc solid-phase synthesis technique, and the T helper (Th) antigen was modified with palmitic acid to improve its efficacy. The vaccine was then coated with a water-in-oil-in-water adjuvant to improve stability and safety. After passing safety and stability tests, the vaccine was administered to 13-week-old boars.ResultsThe results showed that it was stable, safe, and effective for up to 15 months. Moreover, the vaccine did not negatively affect the growth rate and body weight of the pigs. The palmitic acid-modified “GnRH-Th epitope peptide immunocastration vaccine (Water-in-Oil-in-Water (W/O/W)) effectively reduced the testosterone concentration and achieved castration. The concentration of androstenone and skatole hormones significantly decreased, leading to improved meat quality in the boars. The boars were then slaughtered at 33 weeks of age, and the results showed that the meat quality of the vaccinated boars was superior to that of the non-vaccinated control group (p < 0.05).DiscussionThis study demonstrated that GnRH can safely and effectively achieve immune castration in boars after coupling T cell epitopes, palmitic acid modification and W-O-W coating. Provide a better method for the further development of GnRH and the realization of animal welfare

    Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response

    Get PDF
    The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (D500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-beta levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-beta responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.Peer reviewe
    • …
    corecore