452 research outputs found

    Probing Exotic Charged Higgs Decays in the Type-II 2HDM through Top Rich Signal at a Future 100 TeV pp Collider

    Full text link
    The exotic decay modes of non-Standard Model Higgs bosons are efficient in probing the hierarchical Two Higgs Doublet Models (2HDM). In particular, the decay mode H±HW±H^\pm\to HW^\pm serves as a powerful channel in searching for charged Higgses. In this paper, we analyzed the reach for H±HW±ttˉWH^\pm\to HW^\pm \to t\bar{t}W at a 100 TeV pppp collider, and showed that it extends the reach of the previously studied ττW\tau\tau W final states once above the top threshold. Top tagging technique is used, in combination with the boosted decision tree classifier. Almost the entire hierarchical Type-II 2HDM parameter space can be probed via the combination of all channels at low tanβ\tan\beta region.Comment: 17 page

    The kinetics of drug dissolution in polymers during hot-melt extrusion

    Get PDF
    Extrusion has been a most important and widely used continuous process in polymer processing for over one hundred and fifty years. However, it has only been recently applied and adopted by the pharmaceutical industry to prepare solid oral dosage formulations with increased bioavailability for the poorly-water soluble drugs and controlled release characteristics for the water-soluble drugs. In pharmaceutical Hot-melt extrusion poorly water soluble drug particulates are mixed with water soluble polymer excipient particulates and fed in the extruder, where the polymer is melted, after which the drug particulates begin to dissolve into the polymer melt. Extrusion-generated mixing accelerates dissolution process. One issue concerning the pharmaceutical industry is the degradation of drugs when they are exposed to relatively high temperatures of the extrusion process (usually 100 °C above ambient). In order to keep drugs from thermally degrading and at the same time achieving complete dissolution, the dissolution kinetics of drugs (APIs) must be specified for any given excipient/API pair, and a variety of extrusion conditions. In this work the Brabender Batch Mixer is utilized to determine such kinetic data at different concentrations and temperatures by connecting the exponential torque decay after the introduction of the API to the API dissolution. The time to complete the decay is then associated with the average residence time needed for complete dissolution

    Synthesis and Evaluation of Novel Photocatalysts for Photocatalytic Reactions

    Get PDF
    This study focuses on the design of low-dimensional (LD) photocatalysts for water oxidation in oxygen evolution reaction (OER). Through skillful approaches, such as morphological control, interface construction, defect or vacancy engineering, we developed a series of LD hybrids and examined their photo- and photoelectrochemical performances in OER. Attribute to the stable LD structure and synergistic effect of the components, the heterojunction or hierarchical materials showed enhanced charge separation, transportation, water oxidation kinetics and quantum efficiency

    Gis-Based Approaches To Slope Stability Analysis And Earthquake -Induced Landslide Hazard Zonation

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2006This dissertation presents newly developed GIS-based deterministic and probabilistic approaches for slope stability analysis and earthquake-induced landslide hazard zonation. The described approaches combine numerical slope stability analysis with GIS spatial analysis to evaluate earthquake-induced slope failures, both shallow and deep-seated. The study has four major research components. The first component is a GIS-based procedure which was developed based on one-, two-, and three-dimensional (1D, 2D, and 3D) deterministic approaches to slope stability analysis and landslide hazard zonation. Slope stability methods in the GIS-based procedure included the infinite slope model, the block sliding model, the ordinary method of slices, the Bishop simplified method, and the Hovland's column method. The second component focuses on causative factors analysis of earthquake-induced landslide hazards. This component also discusses the determination of peak ground acceleration for slope stability analysis. The third component consists of an evaluation of the topographic effect of ground motion and the seismic response in the Balsamo Ridge area in Nueva San Salvador. The fourth component is concerned with the regional and site-specific landslide hazard zonation, using newly developed models for landslide hazard assessment in Nueva San Salvador. The slope stability and landslide susceptibility were mapped in terms of slope stability index (factor of safety, critical acceleration, Newmark displacement, failure probability, and reliability index). The landslides triggered by an earthquake on January 13, 2001 in El Salvador provide a setting for the calibration of results from GIS-based approaches. The procedures developed in this research proved to be feasible and cost-effective for slope stability analysis and earthquake-induced landslide hazard zonation

    Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells

    Get PDF
    This paper presents a new computational framework for modeling chemically reacting flow in anode-supported solid-oxide fuel cells (SOFC). Depending on materials and operating conditions, SOFC anodes afford a possibility for internal reforming or catalytic partial oxidation of hydrocarbon fuels. An important new element of the model is the capability to represent elementary heterogeneous chemical kinetics in the form of multistep reaction mechanisms. Porous-media transport in the electrodes is represented with a dusty-gas model. Charge-transfer chemistry is represented in a modified Butler-Volmer setting that is derived from elementary reactions, but assuming a single rate-limiting step. The model is discussed in terms of systems with defined flow channels and planar membrane-electrode assemblies. However, the underlying theory is independent of the particular geometry. Examples are given to illustrate the model
    corecore