35 research outputs found

    Stimulation of cannabinoid receptor 2 (CB(2)) suppresses microglial activation

    Get PDF
    BACKGROUND: Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD), multiple sclerosis (MS), and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO), cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB(2)). METHODS: In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB(2 )small interfering RNA (siRNA) analyses. Furthermore, we examined if the stimulation of CB(2 )could modulate the capacity of microglial cells to phagocytise Aβ(1–42 )peptide using a phagocytosis assay. RESULTS: We found that the selective stimulation of cannabinoid receptor CB(2 )by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB(2 )agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB(2 )activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ(1–42 )peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB(2 )modulation in neurodegenerative diseases, particularly AD

    Modelling and analysis of the intersecting axis permanent magnet eddy‐current coupler

    No full text
    Abstract The permanent magnet eddy‐current coupler (PMEC) is a kind of non‐contact, stepless speed regulation device and has been widely used in transmissions. However, the current PMECs are coaxial and cannot achieve transmission and speed regulation in intersecting axes. An intersecting‐axis permanent magnet (PM) eddy current coupler (IPMEC), which consists of a disk‐type PM rotor and a barrel‐type conductive sheet (CS) rotor arranged with intersecting axes, is proposed. It generates eddy currents through the speed difference between the two rotors and uses the non‐contact electromagnetic force between the eddy currents and permanent magnets to transmit torque. During operation, the speed can be adjusted by altering the coupling area or air gap. A theoretical model of the IPMEC based on the equivalent magnetic circuit method is presented and verified by finite element simulation using ANSYS. Then, the effects of the pole number of the PMs, the radius of the CS rotor and the PM rotor on the performance were analysed, and the design method of the IPMEC was proposed. This study can be used to expand the application range of PMECs

    Human Umbilical Cord Blood Serum–derived α-Secretase: Functional Testing in Alzheimer’s Disease Mouse Models

    No full text
    Alzheimer’s disease (AD) is an age-related disorder that affects cognition. Our previous studies showed that the neuroprotective fragment of amyloid procurer protein (APP) metabolite, soluble APPα (sAPPα), interferes with β-site APP-cleaving enzyme 1 (BACE1, β-secretase) cleavage and reduces amyloid-β (Aβ) generation. In an attempt to identify approaches to restore sAPPα levels, we found that human cord blood serum (CBS) significantly promotes sAPPα production compared with adult blood serum (ABS) and aged blood serum (AgBS) in Chinese hamster ovary cells stably expressing wild-type human APP. Interestingly, CBS selectively mediated the α-secretase cleavage of human neuron-specific recombinant APP695 in a cell-free system independent of tumor necrosis factor-α converting enzyme (TACE; a disintegrin and metalloproteinase domain-containing protein 17 [ADAM17]) and ADAM. Subsequently, using 3-step chromatographic separation techniques (i.e., diethylaminoethanol, size-exclusion, and ion-exchange chromatography), we purified and ultimately identified a CBS-specific fraction with enhanced α-secretase catalytic activity (termed αCBSF) and found that αCBSF has more than 3,000-fold increased α-secretase catalytic activity compared with the original pooled CBS. Furthermore, intracerebroventricular injection of αCBSF markedly increased cerebral sAPPα levels together with significant decreases in cerebral Aβ production and abnormal tau (Thr231) phosphorylation compared with the AgBS fraction with enhanced α-secretase activity (AgBSF) treatment in triple transgenic Alzheimer’s disease (3xTg-AD) mice. Moreover, AgBSF administered intraperitoneally to transgenic mice with five familial Alzheimer’s disease mutations (5XFAD) via an osmotic mini pump for 6 weeks (wk) ameliorated β-amyloid plaques and reversed cognitive impairment measures. Together, our results propose the necessity for further study aimed at identification and characterization of α-secretase in CBS for novel and effective AD therapy

    Human Umbilical Cord Blood Serum–derived α-Secretase: Functional Testing in Alzheimer’s Disease Mouse Models

    No full text
    Alzheimer’s disease (AD) is an age-related disorder that affects cognition. Our previous studies showed that the neuroprotective fragment of amyloid procurer protein (APP) metabolite, soluble APPα (sAPPα), interferes with β-site APP-cleaving enzyme 1 (BACE1, β-secretase) cleavage and reduces amyloid-β (Aβ) generation. In an attempt to identify approaches to restore sAPPα levels, we found that human cord blood serum (CBS) significantly promotes sAPPα production compared with adult blood serum (ABS) and aged blood serum (AgBS) in Chinese hamster ovary cells stably expressing wild-type human APP. Interestingly, CBS selectively mediated the α-secretase cleavage of human neuron-specific recombinant APP695 in a cell-free system independent of tumor necrosis factor-α converting enzyme (TACE; a disintegrin and metalloproteinase domain-containing protein 17 [ADAM17]) and ADAM. Subsequently, using 3-step chromatographic separation techniques (i.e., diethylaminoethanol, size-exclusion, and ion-exchange chromatography), we purified and ultimately identified a CBS-specific fraction with enhanced α-secretase catalytic activity (termed αCBSF) and found that αCBSF has more than 3,000-fold increased α-secretase catalytic activity compared with the original pooled CBS. Furthermore, intracerebroventricular injection of αCBSF markedly increased cerebral sAPPα levels together with significant decreases in cerebral Aβ production and abnormal tau (Thr231) phosphorylation compared with the AgBS fraction with enhanced α-secretase activity (AgBSF) treatment in triple transgenic Alzheimer’s disease (3xTg-AD) mice. Moreover, AgBSF administered intraperitoneally to transgenic mice with five familial Alzheimer’s disease mutations (5XFAD) via an osmotic mini pump for 6 weeks (wk) ameliorated β-amyloid plaques and reversed cognitive impairment measures. Together, our results propose the necessity for further study aimed at identification and characterization of α-secretase in CBS for novel and effective AD therapy

    Human Cord Blood Serum-Derived APP α-Secretase Cleavage Activity is Mediated by C1 Complement

    No full text
    Alzheimer’s Disease (AD) is the leading cause of dementia in the elderly. In healthy individuals, amyloid precursor protein (APP) is cleaved by α-secretase, generating soluble α-amyloid precursor protein (sAPPα), which contributes neuroprotective functions in the neuronal environment. In contrast, in the neurodegenerative environment of AD patients, amyloid-β-peptide (Aβ) of either 40 or 42 residues are generated by increased activity of β- and γ-secretase. These proteins amalgamate in specific regions of the brain, which disrupts neuronal functions and leads to cognitive impairment. Human umbilical cord blood cells (HUCBC) have proven useful as potential immunomodulatory therapies in various models of neurodegenerative diseases, including AD. Our most recent work studied the impact of umbilical cord blood serum (CBS) on modulation of sAPPα production. Heat-sensitive CBS significantly promoted sAPPα production, indicating that heat-sensitive factor(s) play(s) a role in this process. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis was used to determine the molecular source of α-secretase in purified CBS and aged blood serum (AgBS) fraction. Of the proteins identified, the subunits of C1 complex (C1q, C1r, and C1s) and alpha-2-macroglobulin showed significantly greater levels in purified α-CBS fraction (α-CBSF) compared with the AgBS fraction (AgBSF). Specifically, C1 markedly increased sAPPα and alpha-carboxyl-terminal fragment (α-CTF) production in a dose-dependent fashion, whereas C1q alone only minimally increased and C3 did not increase sAPPα production in the absence of sera. Furthermore, C1q markedly increased sAPPα and α-CTF, while decreasing Aβ, in CHO/APPwt cells cultured in the presence of whole sera. These results confirm our initial assumption that APP α-secretase activity in human blood serum is mediated by complement C1, opening a potential therapeutic modality for the future of AD
    corecore