81 research outputs found

    Gene Transfer of Calcitonin Gene-Related Peptide Inhibits Macrophages and Inflammatory Mediators in Vein Graft Disease

    Get PDF
    Vein graft disease is a chronic inflammatory disease and limits the late results of coronary revascularization. Calcitonin gene-related peptide (CGRP) inhibits macrophages infiltrated and inflammatory mediators, we hypothesized that transfected CGRP gene inhibits macrophages infiltrated and inflammatory mediators in vein graft disease. Autologous rabbit jugular vein grafts were incubated ex vivo in a solution of mosaic adeno-associated virus vectors containing CGRP gene (AAV2/1.CGRP) 、escherichia coli lac Z gene (AAV2/1.LacZ) or saline and then interposed in the carotid artery. Intima/media ratio were evaluated at postoperative 4 weeks, Macrophages were marked with CD68 antibody by immunocytochemistry. Inflammatory mediators were mensurated with real-time PCR. Neointimal thickening was significantly suppressed in AAV2/1.CGRP group. Macrophages infiltrated and inflammatory mediators monocyte chemoattractant protein-1 (MCP-1)、tumor necrosis factorα(TNF-α)、inducible nitricoxide synthase (iNOS)、matrix metalloproteinase-9 (MMP-9) was significantly suppressed in AAV2/1.CGRP group.Gene transfected AAV2/1.CGRP suppressed neointimal hyperplasia in vein graft disease by suppressed macrophages infiltrated and inflammatory mediators

    Ampere-hour-scale soft-package potassium-ion hybrid capacitors enabling 6-minute fast-charging

    Get PDF
    Extreme fast charging of Ampere-hour (Ah)-scale electrochemical energy storage devices targeting charging times of less than 10 minutes are desired to increase widespread adoption. However, this metric is difficult to achieve in conventional Li-ion batteries due to their inherent reaction mechanism and safety hazards at high current densities. In this work, we report 1 Ah soft-package potassium-ion hybrid supercapacitors (PIHCs), which combine the merits of high-energy density of battery-type negative electrodes and high-power density of capacitor-type positive electrodes. The PIHC consists of a defect-rich, high specific surface area N-doped carbon nanotube-based positive electrode, MnO quantum dots inlaid spacing-expanded carbon nanotube-based negative electrode, carbonate-based non-aqueous electrolyte, and a binder- and current collector-free cell design. Through the optimization of the cell configuration, electrodes, and electrolyte, the full cells (1 Ah) exhibit a cell voltage up to 4.8 V, high full-cell level specific energy of 140 Wh kg-1 (based on the whole mass of device) with a full charge of 6 minutes. An 88% capacity retention after 200 cycles at 10 C (10 A) and a voltage retention of 99% at 25 ± 1 °C are also demonstrated

    Unregulated miR-96 Induces Cell Proliferation in Human Breast Cancer by Downregulating Transcriptional Factor FOXO3a

    Get PDF
    FOXO transcription factors are key tumor suppressors in mammalian cells. Until now, suppression of FOXOs in cancer cells was thought to be mainly due to activation of multiple onco-kinases by a phosphorylation-ubiquitylation-mediated cascade. Therefore, it was speculated that inhibition of FOXO proteins would naturally occur through a multiple step post-translational process. However, whether cancer cells may downregulate FOXO protein via an alternative regulatory mechanism is unclear. In the current study, we report that expression of miR-96 was markedly upregulated in breast cancer cells and breast cancer tissues compared with normal breast epithelial cells (NBEC) and normal breast tissues. Ectopic expression of miR-96 induced the proliferation and anchorage-independent growth of breast cancer cells, while inhibition of miR-96 reduced this effect. Furthermore, upregulation of miR-96 in breast cancer cells resulted in modulation of their entry into the G1/S transitional phase, which was caused by downregulation of cyclin-dependent kinase (CDK) inhibitors, p27Kip1 and p21Cip1, and upregulation of the cell-cycle regulator cyclin D1. Moreover, we demonstrated that miR-96 downregulated FOXO3a expression by directly targeting the FOXO3a 3′-untranslated region. Taken together, our results suggest that miR-96 may play an important role in promoting proliferation of human breast cancer cells and present a novel mechanism of miRNA-mediated direct suppression of FOXO3a expression in cancer cells

    Genome Characterization of the Oleaginous Fungus Mortierella alpina

    Get PDF
    Mortierella alpina is an oleaginous fungus which can produce lipids accounting for up to 50% of its dry weight in the form of triacylglycerols. It is used commercially for the production of arachidonic acid. Using a combination of high throughput sequencing and lipid profiling, we have assembled the M. alpina genome, mapped its lipogenesis pathway and determined its major lipid species. The 38.38 Mb M. alpina genome shows a high degree of gene duplications. Approximately 50% of its 12,796 gene models, and 60% of genes in the predicted lipogenesis pathway, belong to multigene families. Notably, M. alpina has 18 lipase genes, of which 11 contain the class 2 lipase domain and may share a similar function. M. alpina's fatty acid synthase is a single polypeptide containing all of the catalytic domains required for fatty acid synthesis from acetyl-CoA and malonyl-CoA, whereas in many fungi this enzyme is comprised of two polypeptides. Major lipids were profiled to confirm the products predicted in the lipogenesis pathway. M. alpina produces a complex mixture of glycerolipids, glycerophospholipids and sphingolipids. In contrast, only two major sterol lipids, desmosterol and 24(28)-methylene-cholesterol, were detected. Phylogenetic analysis based on genes involved in lipid metabolism suggests that oleaginous fungi may have acquired their lipogenic capacity during evolution after the divergence of Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. Our study provides the first draft genome and comprehensive lipid profile for M. alpina, and lays the foundation for possible genetic engineering of M. alpina to produce higher levels and diverse contents of dietary lipids

    Improvement of the Dimensional Stability of Rubber Wood Based on the Synergies of Sucrose and Tung Oil Impregnation

    No full text
    Rubber wood often exhibits dimensional instability during use, which seriously hinders its widespread application. In order to enhance the dimensional stability of rubber wood, a two-step method was employed in this study to modify rubber wood using two plant-derived compounds, namely sucrose and tung oil. Samples treated alone with sucrose or tung oil were also prepared. The water absorption, dimensional stability, and thermal stability of modified and untreated wood were evaluated. The results show that wood samples treated with 30% sucrose and tung oil had excellent water resistance and dimensional stability based on the synergistic effect of sucrose and tung oil. After 384 h of immersion, the 30% sucrose and tung oil group presented a reduction in water absorption by 76.7% compared to the control group, and the anti-swelling efficiency was 57.85%, which was 66.81% higher than that of the tung oil treatment alone. Additionally, the leaching rate of the 30% sucrose and tung oil group decreased by 81.27% compared to the sample modified with the 30% sucrose solution alone. Simultaneously, the 30% sucrose and tung oil group showed better thermal stability. Therefore, this study demonstrates that the synergistic treatment of modified rubber wood by sucrose and tung oil is an eco-friendly, economical, and highly efficient approach with the potential to expand the range of applications of rubber wood products

    Research and Analysis of concrete facilities’ corrosion in coastal substaion of fujian

    No full text
    Corrosion problems of outdoor concrete facilities was summarized through research on coastal substation of Fujian, such as serious corrosion of steel ring and weld in the joints of cement poles, exposure and corrosion of reinforcement, cracking and falling off of concrete cover. The information of concrete facilities’ assessment reports was summarized, and it was found that concrete compressive strength of present age satisfied early design drawings. In addition, appraisal of reliability revealed that all facilities couldn’t satisfy the requirements of current standards and seismic appraisal revealed that all facilities couldn’t meet the seismic requirements. The analysis of concrete facilities’ corrosion mechanism was made, and it was found that concrete facilities in coastal substation suffered triple effects of carbonation, chloride corrosion and stray current corrosion. The power failure schemes needed for present repairing and strengthening measures of concrete facilities lack of feasibility. Research on repairing and strengthening measures of concrete facilities that requiring no or small-scale power cut would be of great significance

    Genome-wide Identification and Expression Analysis of NRAMP Transporter Genes in Cucumis sativus and Citrullus lanatus

    No full text
    Natural resistance-associated macrophage proteins (NRAMPs) are able to transport various metal ions across cell membranes, which play an important role in plant normal growth and development. Here, a survey of cucumber (Cucumis sativus) and watermelon (Citrullus lanatus) genomes found a total of five CsNRAMPs and four ClNRAMPs, respectively. Based on the phylogenetic relationships, CsNRAMPs and ClNRAMPs were clustered into three groups (I, II and III). Five orthologous pairs were identified between cucumber and watermelon genome, and they were clustered on the same branch of the phylogenetic tree. The number of introns in CsNRAMPs and ClNRAMPs ranged from 3 to 13 and the genes from group Ι were more fragmented than those in group II. Subsequently, analysis of promoter sequences found that five putative transcription factors could act on NRAMPs. Moreover, CsNRAMPs and ClNRAMPs were differentially regulated by deficiencies of Fe, Mn, Cu or Zn, along with toxicities of Fe, Mn, Cu, Zn or Cd. Functional analysis by heterologous expression in yeast indicated that CsNRAMP4 and ClNRAMP3 participate in Cd transport. Overall, the comprehensive analysis of CsNRAMPs and ClNRAMPs reported herein may pave the way for further investigations examining the regulation and functions of this gene family in cucumber and watermelon.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Improving the Stability of Subsurface Structures in Deep Metal Mines by Stress and Energy Adjustment: A Case Study

    No full text
    In deep hard-rock mines, the failure of subsurface structures (e.g., tunnels, stopes, and shafts) has been a significant problem affecting mining safety due to the high-stress environment. In this paper, the mechanism of structural failure and instability is discussed, and optimized excavation methods are proposed for stress control in deep gold mines. Based on the field observation and investigation of the joints distribution and rock failure modes at 800–1200 m depth of several large gold mines and a typical ultradeep borehole (2017 m depth) in northwest Jiaodong Peninsula, three engineering methods for reducing stress, including the stress transferring by mining optimizations, pressure relief by boreholes, and energy release in advance by optimizations of excavation and support, are analyzed by numerical simulation and field monitoring. Results show that stress reduction by excavation alone is limited and the backfill mining method is more conducive to stress transfer than the opening stope method. Roof contacted backfill can produce an unloading zone around the stope and reduce the stress of the surrounding stope. Relief boreholes can reduce the stress concentration of stopes, but the effect of cutting seams generated by presplitting blasting on pressure relief is not significant. The technology “short excavation and short support” releases less energy. By increasing the bench height and the reasonable timing of support by calculating, the elastic strain energy of rock in the shaft is prereleased, which benefits the long-term stability of the shaft
    • …
    corecore