12 research outputs found

    Comprehensive evolutionary analysis of growth-regulating factor gene family revealing the potential molecular basis under multiple hormonal stress in Gramineae crops

    Get PDF
    Growth-regulating factors (GRFs) are plant-specific transcription factors that contain two highly conserved QLQ and WRC domains, which control a range of biological functions, including leaf growth, floral organ development, and phytohormone signaling. However, knowledge of the evolutionary patterns and driving forces of GRFs in Gramineae crops is limited and poorly characterized. In this study, a total of 96 GRFs were identified from eight crops of Brachypodium distachyon, Hordeum vulgare, Oryza sativa L. ssp. indica, Oryza rufipogon, Oryza sativa L. ssp. japonica, Setaria italic, Sorghum bicolor and Zea mays. Based on their protein sequences, the GRFs were classified into three groups. Evolutionary analysis indicated that the whole-genome or segmental duplication plays an essential role in the GRFs expansion, and the GRFs were negatively selected during the evolution of Gramineae crops. The GRFs protein function as transcriptional activators with distinctive structural motifs in different groups. In addition, the expression of GRFs was induced under multiple hormonal stress, including IAA, BR, GA3, 6BA, ABA, and MeJ treatments. Specifically, OjGRF11 was significantly induced by IAA at 6 h after phytohormone treatment. Transgenic experiments showed that roots overexpressing OjGRF11 were more sensitive to IAA and affect root elongation. This study will broaden our insights into the origin and evolution of the GRF family in Gramineae crops and will facilitate further research on GRF function

    Analysis of Circulating Tumor Cells in Ovarian Cancer and Their Clinical Value as a Biomarker

    Get PDF
    Background/Aims: Monitoring the appearance and progression of tumors are important for improving the survival rate of patients with ovarian cancer. This study aims to examine circulating tumor cells (CTCs) in epithelial ovarian cancer (EOC) patients to evaluate their clinical significance in comparison to the existing biomarker CA125. Methods: Immuomagnetic bead screening, targeting epithelial antigens on ovarian cancer cells, combined with multiplex reverse transcriptase-polymerase chain reaction (Multiplex RT-PCR) was used to detect CTCs in 211 samples of peripheral blood (5 ml) from 109 EOC patients. CTCs and CA125 were measured in serial from 153 blood and 153 serum samples from 51 patients and correlations with treatment were analyzed. Immunohistochemistry was used to detect the expression of tumor-associated proteins in tumor tissues and compared with gene expression in CTCs from patients. Results: CTCs were detected in 90% (98/109) of newly diagnosed patients. In newly diagnosed patients, the number of CTCs was correlated with stage (p=0.034). Patients with stage IA-IB disease had a CTC positive rate of 93% (13/14), much higher than the CA125 positive rate of only 64% (9/14) for the same patients. The numbers of CTCs changed with treatment, and the expression of EpCAM (p=0.003) and HER2 (p=0.035) in CTCs was correlated with resistance to chemotherapy. Expression of EpCAM in CTCs before treatment was also correlated with overall survival (OS) (p=0.041). Conclusion: Detection of CTCs allows early diagnose and expression of EpCAM in CTC positive patients predicts prognosis and should be helpful for monitoring treatment

    InDel Markers Based on 3K Whole-Genome Re-Sequencing Data Characterise the Subspecies of Rice (Oryza sativa L.)

    No full text
    A molecular marker is a valuable tool in genetic research. Insertions–deletions (InDels) are commonly used polymorphisms in gene mapping, analysing genetic diversity, marker-assisted breeding, and phylogenetics. The 3000 Rice Genome Project, a re-sequencing project, discovered millions of genome-wide InDels. We found that the proportion of >50-bp long InDels (699,475) of the total (1,248,503) is 56.02%. The number of InDels on each chromosome was consistent with the corresponding chromosome length. The maximum InDels were on chromosome 1 (78,935), and the minimum InDels were on chromosome 9 (41,752), with an average density of 1.87 InDels/kb (range: 1.50–2.36 InDels/kb). Furthermore, 96 InDels of about 3.98 Mb/InDel were selected to detect the polymorphism. The results exhibited ideal performance in 2% agarose gel electrophoresis. Phylogenetic analysis exhibited that InDel markers had excellent polymorphisms between rice varieties of japonica and indica, and varieties could be classified based on the statistical results of their polymorphisms. The InDel markers could be applied to identify the recombinant inbred lines in a population. These results reveal that the high-density long InDel markers could help us examine the functional diversity, species variation, and map-based cloning

    Genome-Wide Identification and Analysis of the Metallothionein Genes in Oryza Genus

    No full text
    Metallothionein (MT) proteins are low molecular mass, cysteine-rich, and metal-binding proteins that play an important role in maintaining metal homeostasis and stress response. However, the evolutionary relationships and functional differentiation of MT in the Oryza genus remain unclear. Here we identified 53 MT genes from six Oryza genera, including O. sativa ssp. japonica, O. rufipogon, O. sativa ssp. indica, O. nivara, O. glumaepatula, and O. barthii. The MT genes were clustered into four groups based on phylogenetic analysis. MT genes are unevenly distributed on chromosomes; almost half of the MT genes were clustered on chromosome 12, which may result from a fragment duplication containing the MT genes on chromosome 12. Five pairs of segmental duplication events and ten pairs of tandem duplication events were found in the rice MT family. The Ka/Ks values of the fifteen duplicated MT genes indicated that the duplicated MT genes were under a strong negative selection during evolution. Next, combining the promoter activity assay with gene expression analysis revealed different expression patterns of MT genes. In addition, the expression of OsMT genes was induced under different stresses, including NaCl, CdCl2, ABA, and MeJ treatments. Additionally, we found that OsMT genes were mainly located in chloroplasts. These results imply that OsMT genes play different roles in response to these stresses. All results provide important insights into the evolution of the MT gene family in the Oryza genus, and will be helpful to further study the function of MT genes

    Integrative Transcriptomic and Proteomic Analysis Reveals an Alternative Molecular Network of Glutamine Synthetase 2 Corresponding to Nitrogen Deficiency in Rice (Oryza sativa L.)

    No full text
    Nitrogen (N) is an essential nutrient for plant growth and development. The root system architecture is a highly regulated morphological system, which is sensitive to the availability of nutrients, such as N. Phenotypic characterization of roots from LY9348 (a rice variety with high nitrogen use efficiency (NUE)) treated with 0.725 mM NH4NO3 (1/4N) was remarkable, especially primary root (PR) elongation, which was the highest. A comprehensive analysis was performed for transcriptome and proteome profiling of LY9348 roots between 1/4N and 2.9 mM NH4NO3 (1N) treatments. The results indicated 3908 differential expression genes (DEGs; 2569 upregulated and 1339 downregulated) and 411 differential abundance proteins (DAPs; 192 upregulated and 219 downregulated). Among all DAPs in the proteome, glutamine synthetase (GS2), a chloroplastic ammonium assimilation protein, was the most upregulated protein identified. The unexpected concentration of GS2 from the shoot to the root in the 1/4N treatment indicated that the presence of an alternative pathway of N assimilation regulated by GS2 in LY9348 corresponded to the low N signal, which was supported by GS enzyme activity and glutamine/glutamate (Gln/Glu) contents analysis. In addition, N transporters (NRT2.1, NRT2.2, NRT2.3, NRT2.4, NAR2.1, AMT1.3, AMT1.2, and putative AMT3.3) and N assimilators (NR2, GS1;1, GS1;2, GS1;3, NADH-GOGAT2, and AS2) were significantly induced during the long-term N-deficiency response at the transcription level (14 days). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that phenylpropanoid biosynthesis and glutathione metabolism were significantly modulated by N deficiency. Notably, many transcription factors and plant hormones were found to participate in root morphological adaptation. In conclusion, our study provides valuable information to further understand the response of rice roots to N-deficiency stress

    Novel QTLs from Wild Rice Oryza longistaminata Confer Strong Tolerance to High Temperature at Seedling Stage

    No full text
    Global warming poses a threat to rice production. Breeding heat-tolerant rice is an effective and economical approach to address this challenge. African rice is a valuable genetic resource for developing heat-tolerant crops due to its intricate mechanism for adapting to high temperatures. Oryza longistaminata, a widely distributed wild rice species in Africa, may harbor an even richer gene pool for heat tolerance, which remains untapped. In this study, we identified three heat tolerance QTLs from O. longistaminata at the seedling stage, including novel heat tolerance loci qTT4 and qTT5. Our findings demonstrated that the O. longistaminata alleles for these two QTLs can enhance the heat tolerance of rice seedlings. Remarkably, qTT5 was mapped to a region spanning approximately 287.2 kb, which contains 46 expressing genes. Through the analysis of Gene Ontology and expression differences under heat induction, we identified four candidate genes. Our results lay the foundation for discovering heat tolerance genes underlying O. longistaminata and developing new genetic resources for heat-tolerant rice breeding
    corecore