31 research outputs found
2023 roadmap for potassium-ion batteries
The heavy reliance of lithium-ion batteries (LIBs) has caused rising concerns on the sustainability of lithium and transition metal and the ethic issue around mining practice. Developing alternative energy storage technologies beyond lithium has become a prominent slice of global energy research portfolio. The alternative technologies play a vital role in shaping the future landscape of energy storage, from electrified mobility to the efficient utilization of renewable energies and further to large-scale stationary energy storage. Potassium-ion batteries (PIBs) are a promising alternative given its chemical and economic benefits, making a strong competitor to LIBs and sodium-ion batteries for different applications. However, many are unknown regarding potassium storage processes in materials and how it differs from lithium and sodium and understanding of solid–liquid interfacial chemistry is massively insufficient in PIBs. Therefore, there remain outstanding issues to advance the commercial prospects of the PIB technology. This Roadmap highlights the up-to-date scientific and technological advances and the insights into solving challenging issues to accelerate the development of PIBs. We hope this Roadmap aids the wider PIB research community and provides a cross-referencing to other beyond lithium energy storage technologies in the fast-pacing research landscape
Chitosan-Reinforced MFC/NFC Aerogel and Antibacterial Property
MFC/NFC aerogel has water sensitivity, and it should be improved in strength in water before application. Chitosan was investigated as a MFC/NFC aerogel reinforcing agent in this paper. The reinforced aerogel showed slightly tighter structure and very good water stability and mechanical strength. FTIR disclosed the chemical bonds formed between chitosan and cellulose. Nanoparticles of silver (Ag-NPs) were loaded using the reinforced aerogel. The excellent Ag-NP monodistribution on the aerogel was expressed by TEM. Both chitosan-reinforced Ag-NPs loaded MFC aerogel and NFC aerogel and expressed great antibacterial activity, though reinforced MFC aerogel exhibited better properties, like higher BET, lighter density, more Ag-NP loading, and better distribution, than NFC aerogel in this research. Chitosan-reinforced MFC aerogel is a good potential substrate for nanoparticle loading and biocomposite making
IMPROVING THE BLEACHABILITY OF WHOLE COTTON STALK CHEMIMECHANICAL PULP WITH DEPECTINIZATION AGENTS
The effects of pretreatment agents on pectin removal and chemical compositions in cotton stalk bark were studied. The results showed that the reaction rates of the depectinization agents reacting with calcium pectinate were V (Na2C2O4)> V (Na5P3O10)> V (NaOH). The ratio of pectin removal reached 53.73% after pretreatment with 3% sodium oxalate. When the parameters of precondition were 3% sodium oxalate, 90 °C, and bleaching with 6.5% NaOH and 11% H2O2, the brightness of chemimechanical pulp from whole cotton stalk reached 76.18% ISO
The Critical Analysis of Catalytic Steam Explosion Pretreatment of Corn Stalk, Lignin Degradation, Recovery, and Characteristic Variations
The lignin degradation and its structural change as a result of catalytic steam explosion pretreatment can be considered of great importance for both the subsequent fermentation and the further utilization of the lignin fraction. This work investigated the degradation mechanism and change in the characteristics of lignin during dilute sulphuric-acid catalytic steam explosion (SE) pretreatment and ammonia catalytic steam explosion (AE) pretreatment of corn stalk. For this purpose, two types of lignin samples obtained from the two pretreatments of aqueous products and solid residues were fractionated, and they were then characterized by a series of comprehensive analyses that consisted of gas chromatography-mass spectroscopy (GC-MS), ion chromatography (IC), Fourier transform infrared (FT-IR), Carbon-13 nuclear magnetic resonance (13C NMR), Carbon-Hydrogen two-dimensional heteronuclear single quantum coherence (13C-1H 2D HSQC), pyrolysis-GC-MS (Py-GC-MS), and field emission scanning electron microscopy (FE-SEM). Overall, the characteristic diversity of the lignin provides useful reference for high-value applications of lignin
Loading of Iron (II, III) Oxide Nanoparticles in Cryogels Based on Microfibrillar Cellulose for Heavy Metal Ion Separation
Cryogels based on microfibrillar cellulose (MFC) and reinforced with chitosan to endow water resistance were loaded with magnetite nanoparticles (MNPs) and characterized by TEM, XRD, and TGA. The MNP-loaded cryogels were tested for heavy metal ion removal from aqueous matrices. The adsorption capacity under equilibrium conditions for Cr(VI), Pd(II), Cd(II), and Zn(II) was measured to be 2755, 2155, 3015, and 4100 mg/g, respectively. The results indicate the potential of the introduced bicomponent cryogels for nanoparticle loading, leading to a remarkably high metal ion sorption capacity.Peer reviewe
Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries
Anatase TiO2 nanocrystals were successfully employed as anodes for rechargeable Na-ion batteries for the first time. The mesoporous electrodes exhibited a highly stable reversible charge storage capacity of 3c150 mA h g-\ub9 over 100 cycles, and were able to withstand high rate cycling, fully recovering this capacity after being cycled at rates as high as 2 A g-\ub9.Peer reviewed: YesNRC publication: Ye
Predicting the Swelling Behavior of Acrylic Superabsorbent Polymers Used in Diapers
Acrylic polymer is a superabsorbent for water and widely used in diapers, in which its swelling behavior can be significantly affected by several factors, i.e., the time, temperature, pH, and salt concentration, and thus the product performance in the applications. In this work, the water absorption behavior of acrylic superabsorbent polymers by each of these individual factors was investigated. The results showed that the water absorbency increases with the pH in the range of 2 to ~7 and decreases when the pH continues to increase. However, it decreases with the increases in NaCl concentration in the solution. Moreover, more water can be absorbed by the acrylic polymers at the higher temperature. Based on a previously developed kinetic swelling model and the information from the above investigations, a semiempirical model for predicting the swelling behavior of superabsorbent polymers (SAPs) under different conditions has been developed. Data showed that the model can predict (with a relative error of <4.5%) the amount of water absorbed by acrylic SAPs under different swelling conditions. The model would be very helpful to the practical application in both product design and its performance evaluation