543 research outputs found

    The 3D-tomography of the nano-clusters formed by Fe-coating and annealing of diamond films for enhancing their surface electron field emitters

    Get PDF
    [[abstract]]The Fe-coating and H2-annealed processes markedly increased the conductivity and enhanced the surface electron field emission (s-EFE) properties for the diamondfilms. The enhancement on the s-EFE properties for the diamondfilms is presumably owing to the formation of nano-graphite clusters on the surface of the films via the Fe-to-diamond interaction. However, the extent of enhancement varied with the granular structure of the diamondfilms. For the microcrystalline (MCD)films, the s-EFE process can be turned on at (E0)MCD = 1.9 V/μm, achieving a large s-EFE current density of (Je)MCD = 315 μA/cm2 at an applied field of 8.8 V/μm. These s-EFE properties are markedly better than those for Fe-coated/annealed ultrananocrystalline diamond(UNCD)films with (E0)UNCD = 2.0 V/μm and (Je)UNCD = 120 μA/cm2. The transmission electron microscopy showed that the nano-graphite clusters formed an interconnected network for MCDfilms that facilitated the electron transport more markedly, as compared with the isolated nano-graphitic clusters formed at the surface of the UNCDfilms. Therefore, the Fe-coating/annealing processes improved the s-EFE properties for the MCDfilms more markedly than that for the UNCDfilms. The understanding on the distribution of the nano-clusters is of critical importance in elucidating the authentic factor that influences the s-EFE properties of the diamondfilms. Such an understanding is possible only through the 3D-tomographic investigations.[[journaltype]]國外[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]US

    A Survey on Fundamental Limits of Integrated Sensing and Communication

    Get PDF
    The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems due to two main reasons. First, many important application scenarios in fifth generation (5G) and beyond, such as autonomous vehicles, Wi-Fi sensing and extended reality, requires both high-performance sensing and wireless communications. Second, with millimeter wave and massive multiple-input multiple-output (MIMO) technologies widely employed in 5G and beyond, the future communication signals tend to have high-resolution in both time and angular domain, opening up the possibility for ISAC. As such, ISAC has attracted tremendous research interest and attentions in both academia and industry. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class of the traditional sensing and ISAC systems. Finally, the open problems and future research directions are discussed

    Clinical Study Analgesic Effects of Intra-Articular Bupivacaine/Intravenous Parecoxib Combination Therapy versus Intravenous Parecoxib Monotherapy in Patients Receiving Total Knee Arthroplasty: A Randomized, Double-Blind Trial

    Get PDF
    Objectives. The purpose of this double-blind, randomized study was to investigate whether the addition of intra-articular bupivacaine to intravenous parecoxib could improve pain relief in patients undergoing total knee arthroplasty. Methods. A total of 36 patients undergoing total knee arthroplasty were enrolled into our study. These patients were randomly allocated either to a placebo-controlled group or study group. Postoperative pain scores and analgesic consumption were evaluated. Results. Numeric rating scale (NRS) data of bupivacaine group in postoperative room were significantly lower than that of control group (control group versus bupivacaine group, 7.9 (6.7-9.1) (mean and 95% confidence interval) versus 4.5 (3.2-5.8) (mean and 95% confidence interval), = 0.001). NRS data of bupivacaine group in ward were also significantly lower than that of control group. A significantly lower dose of meperidine was used in the study group postoperatively during the first 24 hours (control group versus bupivacaine group, 3.08 ± 0.80 mg/Kg versus 2.34 ± 0.42 mg/Kg, = 0.001). Conclusion. Intra-articular bupivacaine in combination with intravenous parecoxib may improve pain relief and reduce the demand for rescue analgesics in patients undergoing total knee arthroplasty. The trial is registered with Australian New Zealand Clinical Trials Registry (ACTRN12615000463572)

    Neutrophilic Inflammation in the Immune Responses of Chronic Obstructive Pulmonary Disease: Lessons from Animal Models

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide, which is characterized by chronic bronchitis, destruction of small airways, and enlargement/disorganization of alveoli. It is generally accepted that the neutrophilic airway inflammation observed in the lungs of COPD patients is intrinsically linked to the tissue destruction and alveolar airspace enlargement, leading to disease progression. Animal models play an important role in studying the underlying mechanisms of COPD as they address questions involving integrated whole body responses. This review aims to summarize the current animal models of COPD, focusing on their advantages and disadvantages on immune responses and neutrophilic inflammation. Also, we propose a potential new animal model of COPD, which may mimic the most characteristics of human COPD pathogenesis, including persistent moderate-to-high levels of neutrophilic inflammation

    Designing Artificial Two-Dimensional Landscapes via Room-Temperature Atomic-Layer Substitution

    Full text link
    Manipulating materials with atomic-scale precision is essential for the development of next-generation material design toolbox. Tremendous efforts have been made to advance the compositional, structural, and spatial accuracy of material deposition and patterning. The family of 2D materials provides an ideal platform to realize atomic-level material architectures. The wide and rich physics of these materials have led to fabrication of heterostructures, superlattices, and twisted structures with breakthrough discoveries and applications. Here, we report a novel atomic-scale material design tool that selectively breaks and forms chemical bonds of 2D materials at room temperature, called atomic-layer substitution (ALS), through which we can substitute the top layer chalcogen atoms within the 3-atom-thick transition-metal dichalcogenides using arbitrary patterns. Flipping the layer via transfer allows us to perform the same procedure on the other side, yielding programmable in-plane multi-heterostructures with different out-of-plane crystal symmetry and electric polarization. First-principle calculations elucidate how the ALS process is overall exothermic in energy and only has a small reaction barrier, facilitating the reaction to occur at room temperature. Optical characterizations confirm the fidelity of this design approach, while TEM shows the direct evidence of Janus structure and suggests the atomic transition at the interface of designed heterostructure. Finally, transport and Kelvin probe measurements on MoXY (X,Y=S,Se; X and Y corresponding to the bottom and top layers) lateral multi-heterostructures reveal the surface potential and dipole orientation of each region, and the barrier height between them. Our approach for designing artificial 2D landscape down to a single layer of atoms can lead to unique electronic, photonic and mechanical properties previously not found in nature

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure
    corecore