3,153 research outputs found

    Learning enables adaptation in cooperation for multi-player stochastic games

    Get PDF
    Interactions among individuals in natural populations often occur in a dynamically changing environment. Understanding the role of environmental variation in population dynamics has long been a central topic in theoretical ecology and population biology. However, the key question of how individuals, in the middle of challenging social dilemmas (e.g. the ‘tragedy of the commons’), modulate their behaviours to adapt to the fluctuation of the environment has not yet been addressed satisfactorily. Using evolutionary game theory, we develop a framework of stochastic games that incorporates the adaptive mechanism of reinforcement learning to investigate whether cooperative behaviours can evolve in the ever-changing group interaction environment. When the action choices of players are just slightly influenced by past reinforcements, we construct an analytical condition to determine whether cooperation can be favoured over defection. Intuitively, this condition reveals why and how the environment can mediate cooperative dilemmas. Under our model architecture, we also compare this learning mechanism with two non-learning decision rules, and we find that learning significantly improves the propensity for cooperation in weak social dilemmas, and, in sharp contrast, hinders cooperation in strong social dilemmas. Our results suggest that in complex social–ecological dilemmas, learning enables the adaptation of individuals to varying environments

    Designing for Appropriate Reliance: The Roles of AI Uncertainty Presentation, Initial User Decision, and User Demographics in AI-Assisted Decision-Making

    Full text link
    Appropriate reliance is critical to achieving synergistic human-AI collaboration. For instance, when users over-rely on AI assistance, their human-AI team performance is bounded by the model's capability. This work studies how the presentation of model uncertainty may steer users' decision-making toward fostering appropriate reliance. Our results demonstrate that showing the calibrated model uncertainty alone is inadequate. Rather, calibrating model uncertainty and presenting it in a frequency format allow users to adjust their reliance accordingly and help reduce the effect of confirmation bias on their decisions. Furthermore, the critical nature of our skin cancer screening task skews participants' judgment, causing their reliance to vary depending on their initial decision. Additionally, step-wise multiple regression analyses revealed how user demographics such as age and familiarity with probability and statistics influence human-AI collaborative decision-making. We discuss the potential for model uncertainty presentation, initial user decision, and user demographics to be incorporated in designing personalized AI aids for appropriate reliance.Comment: Accepted to CSCW202

    Enriched Physical Environment Attenuates Spatial and Social Memory Impairments of Aged Socially Isolated Mice

    Get PDF
    Background: Social isolation in the elderly is one of the principal health risks in an aging society. Physical environmental enrichment is shown to improve sensory, cognitive, and motor functions, but it is unknown whether environmental enrichment can protect against brain impairments caused by social isolation. Methods: Eighteen-month-old mice were housed, either grouped or isolated, in a standard or enriched environment for 2 months, respectively. Behavioral tests were performed to evaluate cognitive functional and social interaction ability. Synaptic protein levels, myelination, neuroinflammation, brain derived neurotrophic factor, and NOD-like receptor protein 3 inflammasome signaling pathways were examined in the medial prefrontal cortex and hippocampus. Results: Isolated aged mice exhibited declines in spatial memory and social memory compared with age-matched littermates living within group housing. The aforementioned memory malfunctions were mitigated in isolated aged mice that were housed in a large cage with a running wheel and novel toys. Enriched housing prevented synaptic protein loss, myelination defects, and downregulation of brain derived neurotrophic factor, while also increasing interleukin 1 beta and tumor necrosis factor alpha in the medial prefrontal cortex and hippocampus of isolated mice. In addition, activation of glial cells and NOD-like receptor protein 3 inflammasomes was partially ameliorated in the hippocampus of isolated mice treated with physical environmental enrichment. Conclusions: These results suggest that an enriched physical environment program may serve as a nonpharmacological intervention candidate to help maintain healthy brain function of elderly people living alone

    Characterization of Point Mutations in the cdtA Gene of the Cytolethal Distending Toxin of Actinobacillus Actinomycetemcomitans

    Get PDF
    The Cdt is a family of gram-negative bacterial toxins that typically arrest eukaryotic cells in the G0/G1 or G2/M phase of the cell cycle. The toxin is a heterotrimer composed of the cdtA, cdtB and cdtC gene products. Although it has been shown that the CdtA protein subunit binds to cells in culture and in an enzyme-linked immunosorbent assay (CELISA) the precise mechanisms by which CdtA interacts with CdtB and CdtC has not yet been clarified. In this study we employed a random mutagenesis strategy to construct a library of point mutations in cdtA to assess the contribution of individual amino acids to binding activity and to the ability of the subunit to form biologically active holotoxin. Single unique amino acid substitutions in seven CdtA mutants resulted in reduced binding of the purified recombinant protein to Chinese hamster ovary cells and loss of binding to the fucose-containing glycoprotein, thyroglobulin. These mutations clustered at the 5′- and 3′-ends of the cdtA gene resulting in amino acid substitutions that resided outside of the aromatic patch region and a conserved region in CdtA homologues. Three of the amino acid substitutions, at positions S165N (mutA81), T41A (mutA121) and C178W (mutA221) resulted in gene products that formed holotoxin complexes that exhibited a 60% reduction (mutA81) or loss (mutA121, mutA221) of proliferation inhibition. A similar pattern was observed when these mutant holotoxins were tested for their ability to induce cell cycle arrest and to convert supercoiled DNA to relaxed and linear forms in vitro. The mutations in mutA81 and mutA221 disrupted holotoxin formation. The positions of the amino acid substitutions were mapped in the Haemophilus ducreyi Cdt crystal structure providing some insight into structure and function

    Characterization of Point Mutations in the cdtA Gene of the Cytolethal Distending Toxin of Actinobacillus Actinomycetemcomitans

    Get PDF
    The Cdt is a family of gram-negative bacterial toxins that typically arrest eukaryotic cells in the G0/G1 or G2/M phase of the cell cycle. The toxin is a heterotrimer composed of the cdtA, cdtB and cdtC gene products. Although it has been shown that the CdtA protein subunit binds to cells in culture and in an enzyme-linked immunosorbent assay (CELISA) the precise mechanisms by which CdtA interacts with CdtB and CdtC has not yet been clarified. In this study we employed a random mutagenesis strategy to construct a library of point mutations in cdtA to assess the contribution of individual amino acids to binding activity and to the ability of the subunit to form biologically active holotoxin. Single unique amino acid substitutions in seven CdtA mutants resulted in reduced binding of the purified recombinant protein to Chinese hamster ovary cells and loss of binding to the fucose-containing glycoprotein, thyroglobulin. These mutations clustered at the 5′- and 3′-ends of the cdtA gene resulting in amino acid substitutions that resided outside of the aromatic patch region and a conserved region in CdtA homologues. Three of the amino acid substitutions, at positions S165N (mutA81), T41A (mutA121) and C178W (mutA221) resulted in gene products that formed holotoxin complexes that exhibited a 60% reduction (mutA81) or loss (mutA121, mutA221) of proliferation inhibition. A similar pattern was observed when these mutant holotoxins were tested for their ability to induce cell cycle arrest and to convert supercoiled DNA to relaxed and linear forms in vitro. The mutations in mutA81 and mutA221 disrupted holotoxin formation. The positions of the amino acid substitutions were mapped in the Haemophilus ducreyi Cdt crystal structure providing some insight into structure and function

    Isolation Housing Exacerbates Alzheimer\u27s Disease-Like Pathophysiology in Aged APP/PS1 Mice

    Get PDF
    BACKGROUND: Alzheimer\u27s disease is a neurodegenerative disease characterized by gradual declines in social, cognitive, and emotional functions, leading to a loss of expected social behavior. Social isolation has been shown to have adverse effects on individual development and growth as well as health and aging. Previous experiments have shown that social isolation causes an early onset of Alzheimer\u27s disease-like phenotypes in young APP695/PS1-dE9 transgenic mice. However, the interactions between social isolation and Alzheimer\u27s disease still remain unknown. METHODS: Seventeen-month-old male APP695/PS1-dE9 transgenic mice were either singly housed or continued group housing for 3 months. Then, Alzheimer\u27s disease-like pathophysiological changes were evaluated by using behavioral, biochemical, and pathological analyses. RESULTS: Isolation housing further promoted cognitive dysfunction and Aβ plaque accumulation in the hippocampus of aged APP695/PS1-dE9 transgenic mice, associated with increased γ-secretase and decreased neprilysin expression. Furthermore, exacerbated hippocampal atrophy, synapse and myelin associated protein loss, and glial neuroinflammatory reactions were observed in the hippocampus of isolated aged APP695/PS1-dE9 transgenic mice. CONCLUSIONS: The results demonstrate that social isolation exacerbates Alzheimer\u27s disease-like pathophysiology in aged APP695/PS1-dE9 transgenic mice, highlighting the potential role of group life for delaying or counteracting the Alzheimer\u27s disease process

    TDP-43 Potentiates Alpha-synuclein Toxicity to Dopaminergic Neurons in Transgenic Mice

    Get PDF
    TDP-43 and α-synuclein are two disease proteins involved in a wide range of neurodegenerative diseases. While TDP-43 proteinopathy is considered a pathologic hallmark of sporadic amyotrophic lateral sclerosis and frontotemporal lobe degeneration, α-synuclein is a major component of Lewy body characteristic of Parkinson's disease. Intriguingly, TDP-43 proteinopathy also coexists with Lewy body and with synucleinopathy in certain disease conditions. Here we reported the effects of TDP-43 on α-synuclein neurotoxicity in transgenic mice. Overexpression of mutant TDP-43 (M337V substitution) in mice caused early death in transgenic founders, but overexpression of normal TDP-43 only induced a moderate loss of cortical neurons in the transgenic mice at advanced ages. Interestingly, concomitant overexpression of normal TDP-43 and mutant α-synuclein caused a more severe loss of dopaminergic neurons in the double transgenic mice as compared to single-gene transgenic mice. TDP-43 potentiated α-synuclein toxicity to dopaminergic neurons in living animals. Our finding provides in vivo evidence suggesting that disease proteins such as TDP-43 and α-synuclein may play a synergistic role in disease induction in neurodegenerative diseases
    • …
    corecore