4,630 research outputs found

    Geometric and Electronic Structure of Graphene Bilayer Edges

    Get PDF
    We present a computational investigation of free-standing graphene bilayer edge (BLE) structures, aka “fractional nanotubes.” We demonstrate that these curved carbon nanostructures possess a number of interesting properties, electronic in origin. The BLEs, quite atypical of elemental carbon, have large permanent electric dipoles of 0.87 and 1.14 debye/Å for zigzag and armchair inclinations, respectively. An unusual, weak AA interlayer coupling leads to a twinned double-cone dispersion of the electronic states near the Dirac points. This entails a type of quantum Hall behavior markedly different from what has been observed in graphenebased materials, characterized by a magnetic field-dependent resonance in the Hall conductivity

    When Social Influence Meets Item Inference

    Full text link
    Research issues and data mining techniques for product recommendation and viral marketing have been widely studied. Existing works on seed selection in social networks do not take into account the effect of product recommendations in e-commerce stores. In this paper, we investigate the seed selection problem for viral marketing that considers both effects of social influence and item inference (for product recommendation). We develop a new model, Social Item Graph (SIG), that captures both effects in form of hyperedges. Accordingly, we formulate a seed selection problem, called Social Item Maximization Problem (SIMP), and prove the hardness of SIMP. We design an efficient algorithm with performance guarantee, called Hyperedge-Aware Greedy (HAG), for SIMP and develop a new index structure, called SIG-index, to accelerate the computation of diffusion process in HAG. Moreover, to construct realistic SIG models for SIMP, we develop a statistical inference based framework to learn the weights of hyperedges from data. Finally, we perform a comprehensive evaluation on our proposals with various baselines. Experimental result validates our ideas and demonstrates the effectiveness and efficiency of the proposed model and algorithms over baselines.Comment: 12 page

    On Abstract Economies and Their Applications

    Get PDF
    We establish a new equilibrium existence theorem of generalized abstract economies with general preference correspondences. As an application, we derive an existence theorem of generalized quasi-variational inequalities in the general setting of -spaces without any linear structure

    JOINT MOBILIZATION CHANGES ACTIVATIONS IN GLUTEUS AND VASTI MUSCLES DURING FUNCTIONAL ACTIVITIES IN PEOPLE WITHOUT AND WITH PATELLOFEMORAL PAIN SYNDROME

    Get PDF
    We aimed to examine whether patellofemoral joint mobilization altered the activation in vasti and gluteus muscles in people with and without PFPS during functional activities. A total of 40 young collegiate students with and without PFPS were recruited. After the intervention of patellofemoral joint mobilization, there were significant earlier activations of vasti muscles and delayed activation of gluteus muscles such as heel rise, step up and down and drop landing in people with PFPS compared to that of healthy controls (

    In Situ Imaging of Layer-by-Layer Sublimation of Suspended Graphene

    Get PDF
    ABSTRACT An individual suspended graphene sheet was connected to a scanning tunneling microscopy probe inside a transmission electron microscope, and Joule heated to high temperatures. At high temperatures and under electron beam irradiation, the few-layer graphene sheets were removed layer-by-layer in the viewing area until a monolayer graphene was formed. The layer-by-layer peeling was initiated at vacancies in individual graphene layers. The vacancies expanded to form nanometer-sized holes, which then grew along the perimeter and propagated to both the top and bottom layers of a bilayer graphene joined by a bilayer edge. The layer-by-layer peeling was induced by atom sublimation caused by Joule heating and facilitated by atom displacement caused by high-energy electron irradiation, and may be harnessed to control the layer thickness of graphene for device applications

    Generating Giant and Tunable Nonlinearity in a Macroscopic Mechanical Resonator from Chemical Bonding Force

    Full text link
    Nonlinearity in macroscopic mechanical system plays a crucial role in a wide variety of applications, including signal transduction and processing, synchronization, and building logical devices. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow the Hooke's law and response linearly to external force, unless strong drive is used. Here we propose and experimentally realize a record-high nonlinear response in macroscopic mechanical system by exploring the anharmonicity in deforming a single chemical bond. We then demonstrate the tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize a cubic elastic constant of \mathversion{bold}2×1018 N/m32 \times 10^{18}~{\rm N}/{\rm m^3}, many orders of magnitude larger in strength than reported previously. This enables us to observe vibrational bistate transitions of the resonator driven by the weak Brownian thermal noise at 6~K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics

    Novel Codon-optimization Genes Encoded in Chlorella for Triacylglycerol Accumulation

    Get PDF
    AbstractMicroalgae have been recognized as one of the potential resources for biodiesel production based on its fast growth or its high total lipid content depending on species. Expression of Kennedy pathway genes, which encodes GPAT, LPAAT, PAP, and DGAT for increasing the metabolic flux towards the TAG storage in Chlorella sp. from 20 to 46 wt% and total lipid accumulation from 35 to 60wt.% corresponding to each specific gene combination under autotrophy, compare to the wild type (vector only). The highest TAG content was found in cells expressing a quadruple-gene construct (GPAT-LPAAT-PAP-DGAT) in the Kennedy pathway, corresponding to 46wt.% of TAG and 60wt.% of total lipid content. This work provides the optimization of TAG production in Chlorella sp. can be achieved by manipulating the selected genes, in turns making commercially producing biodiesel practical

    HIV-1 Transmission among Injecting Drug Users is Principally Derived from Local Circulating Strains in Guangxi, China

    Get PDF
    OBJECTIVE: The mode of human immunodeficiency virus (HIV) transmission METHODS: We performed a molecular epidemiological investigation of infections across Guangxi from 2009 to 2019. Phylogenetic and Bayesian time-geographic analyses of HIV-1 sequences were performed to confirm the characteristics of transmission between IDUs in combination with epidemiological data. RESULTS: Among the 535 subjects, CRF08_BC (57.4%), CRF01_AE (28.4%), and CRF07_BC (10.7%) were the top 3 HIV strains; 72.6% of infections were linked to other provinces in the transmission network; 93.6% of sequence-transmitted strains were locally endemic, with the rest coming from other provinces, predominantly Guangdong and Yunnan; 92.1% of the HIV transmission among people who inject drugs tended to be transmitted between HIV-positive IDUs. CONCLUSION: HIV recombinants were high diversity, and circulating local strains were the transmission sources among IDUs in Guangxi. However, there were still cases of IDUs linked to other provinces. Coverage of traditional prevention strategies should be expanded, and inter-provincial collaboration between Guangxi, Yunnan, and Guangdong provinces should be strengthened
    • …
    corecore