45 research outputs found

    Associations of serum vitamin B6 status with the risks of cardiovascular, cancer, and all-cause mortality in the elderly

    Get PDF
    BackgroundThere are few studies investigating the relationship between serum vitamin B6 and mortality risk in the elderly. This study hereby evaluated the associations between biomarkers of serum vitamin B6 status and cardiovascular, cancer, and all-cause mortality risks in the elderly.MethodsOur study included a total of 4,881 participants aged 60 years or older from the National Health and Nutrition Examination Survey (NHANES) 2005-2010. Serum vitamin B6 status was estimated based on levels of pyridoxal 5’-phosphate (PLP), 4-pyridoxic acid (4-PA), and vitamin B6 turnover rate (4-PA/PLP) detected by high-performance liquid chromatography. Survival status and corresponding causes of death were matched through the National Death Index records through December 31, 2019. Multivariate Cox regression model was adopted to assess the relationships between serum vitamin B6 status and the risk of mortality.ResultsDuring a median follow-up period of 10.33 years, 507 cardiovascular deaths, 426 cancer deaths, and 1995 all-cause deaths were recorded, respectively. In the multivariate-adjusted Cox model, the hazard ratios (HRs) and 95% confidence intervals (CIs) for the highest versus the lowest quartiles of PLP, 4-PA, and 4-PA/PLP were 0.70(0.54-0.90), 1.33(0.88-2.02), and 2.01(1.41-2.79) for cardiovascular mortality, 0.73(0.52-1.02), 1.05(0.71-1.57), and 1.95(1.25-3.05) for cancer mortality, and 0.62(0.53-0.74), 1.05(0.82-1.34), and 2.29(1.87-2.79) for all-cause mortality, respectively.ConclusionOur study found that lower serum PLP levels were associated with increased risks of cardiovascular and all-cause mortality among the elderly population. And higher vitamin B6 turnover rate was associated with increased risks of cardiovascular, cancer, and all-cause mortality

    LES investigation into the cavity shedding dynamics and cavitation-vortex interaction around a surface-piercing hydrofoil

    No full text
    Recent experiments have found that there is unstable vaporous cavitation around a surface-piercing hydrofoil at high Froude numbers and small yaw angles, and it would promote ventilation formation [R. Huang et al., "Investigations into the ventilated cavities around a surface-piercing hydrofoil at high Froude numbers, " Phys. Fluids 34, 043304 (2022)], but the cavity shedding dynamics and the mechanism of cavitation-vortex interaction are still open problems. In this paper, the unstable vaporous cavities around a surface-piercing hydrofoil are numerically investigated using the large-eddy simulation coupled with the Schnerr-Sauer cavitation model. Numerical simulations can predict the cavity features, including an aerated base cavity aft of the hydrofoil trailing edge, vaporous cavitation at the hydrofoil suction surface, and tip-vortex cavitation. A U-shaped vapor cloud shedding together with a horseshoe vortex is observed during the unsteady cavitation evolution, that is, the cavity development, cutoff, and collapse. This irregular shedding is related to the three-dimensional reentrant jet induced by the velocity reflection at the vaporous cavity closure line. Furthermore, the effects of the vaporous cavitation on the vorticity generation are attributed to vortex stretching, baroclinic torque, and vortex dilatation by using the vorticity transport equation. This study could contribute to the novel hydrofoil designs and their flow control. Published under an exclusive license by AIP Publishing

    Dynamic mode decomposition and reconstruction of the transient propeller wake under a light loading condition

    No full text
    This research aims to extend our understanding of propeller wake dynamics under a light loading condition, thereby laying a foundation for design optimization and flow control of the propeller. Dynamic mode decom-position (DMD) and reconstruction are used to analyze the transient vortical wake structures obtained by large eddy simulation. The propeller wake includes stable tip and hub vortices without interacting evolution at the light loading condition, and elliptical instabilities are observed downstream of the tip vortices. DMD describes the most energetic modes and the corresponding dominant frequencies are the blade passing frequency and its multiples. The coherent structures identified via DMD are primarily associated with the ordered convection of the tip vortices and have little correlation with the hub vortices. Additionally, the propeller wake flow is reconstructed using the first four DMD modes, and the primary wake features are well restored with a maximum reconstructed error of 7.98%. This demonstrates that the flow-field reconstruction based on the DMD reduced-order model is promising for predicting the propeller wake and controlling the propeller operation

    Expression and prognostic analyses of early growth response proteins (EGRs) in human breast carcinoma based on database analysis

    No full text
    Background Early growth response proteins (EGRs), as a transcriptional regulatory family, are involved in the process of cell growth, differentiation, apoptosis, and even carcinogenesis. However, the role of EGRs in tumors, their expression levels, and their prognostic value remain unclear. Methods Using the Oncomine database, Kaplan–Meier Plotter, bcGenExMiner v4.2, cBioPortal, and other tools, the association between the survival data of breast carcinoma (BC) patients and transcriptional levels of four EGRs was investigated. Results According to the Oncomine database, in comparison to normal tissues, the expression level of EGR2/3 mRNA in BC tissues was decreased, but there was no difference in the expression level of EGR4 mRNA. On the basis of the Scarff-Bloom-Richardson (SBR) grading system, the downregulated expression level of EGR1/2/3 and upregulated expression level of EGR4 were correlated with an increased histological differentiation level, with significant differences (p < 0.05). Kaplan–Meier curves suggest that a reduction in EGR2/3 mRNA expression is related to recurrence-free survival (RFS) in BC patients. In addition, the mRNA expression level of EGR1/2/3 was related to metastatic relapse-free survival (MRFS) in BC patients with metastatic recurrence (p < 0.05). Conclusion EGR1/2/3 can be utilized as an important factor for evaluating prognosis and may be relevant to diagnosis. EGR4 may play a role in the occurrence and development of BC. The specific function and mechanism of EGRs in BC deserve further study

    Numerical Investigation on the Ventilated Supercavity around a Body under Free Surface Effect

    No full text
    Reducing vessel resistance by using ventilated cavities has been a highly researched topic in the marine industry. There is limited literature on ventilated supercavities near the free surface, which indicates that their dynamic behavior is more complex than conventional ventilated cavities due to the effect of the free surface. This paper employs numerical simulations to study the dynamic behavior of the ventilated supercavity, taking into account the effect of the free surface. Numerical simulations can predict gas leakage behaviors, cavity geometry, and internal flow structures. The influence of the free surface shortens the length of the ventilated cavity and increases the diameter. The presence of the free surface mainly changes the vertical velocity distribution between the free surface and the cavity. The results show that there are two typical gas leakage mechanisms under different immersion depths: twin-vortex tube leakage mode and re-entrant jet leakage mode. The internal flow field of ventilated supercavity is classified into three regions: the internal boundary layer, the ventilation influence region, and the reverse flow region. As the distance between the free surface and the ventilated supercavity decreases, the ventilated supercavity is affected by both the free surface effect and the gravity effect

    Numerical investigations into the ventilation elimination mechanism of a surface-piercing hydrofoil

    No full text
    This paper investigates the ventilation elimination mechanisms during the deceleration process of a surfacepiercing hydrofoil using the unsteady Reynolds-averaged Navier-Stokes (RANS) method together with a Volume of Fluid (VOF) model. The numerical results are in good agreement with the experimental data. The ventilation elimination mechanism of the surface-piercing hydrofoil is analyzed from the perspectives of the hydrofoil hydrodynamic performance, the ventilated cavity evolution, vortex structures, and re-entrant jets. The results indicate that the ventilation elimination includes three stages, i.e. a decrease in the ventilated cavity, washout, and reattachment. The decrease in the ventilated cavity is due to the hydrofoil speed decrease in the FV flow. Washout is the transition from fully ventilated to partially ventilated flow, and reattachment is the transition from partially ventilated to fully wetted flow. The underwater vortex structures around the surfacepiercing hydrofoil are composed of a tip vortex, an unstable vortex induced by the shear layer, and a Karman vortex caused by the vortex shedding from the trailing edge of the hydrofoil. Ventilation stability strongly depends on the re-entrant jet. When Phi (the angle between the flow direction and the closure line of the ventilated cavity) is greater than 45 degrees, the re-entrant jet impinges on the ventilated cavity's leading edge and destabilizes the ventilated cavity

    Numerical investigations into supercavitating flows and hydrodynamic characteristics of a heaving hydrofoil

    No full text
    This paper presents the effects of heaving motions on the hydrodynamic characteristics, supercavitating flow regimes and vortex structures for a two-dimensional (2D) supercavitating hydrofoil. The sinusoidal heaving motion of the supercavitating hydrofoil is realized by overset grid technology. The lift coefficient, drag coefficient, supercavitating flow regime and vortex structures around the supercavitating hydrofoil are analyzed and compared among different amplitudes of the heaving motion. The predicted cavities and the hydrodynamic characteristics are in good accordance with the experiments at a stationary state. The lift coefficient and drag coefficient of the heaving hydrofoil present a sinusoidal law, which is related to the effective angle of attack. The heaving motion would affect the cavity length and its thickness. The greater the heaving amplitude, the greater the difference in cavity pattern at different heaving positions. The cavity variation would affect the shear layer and thus change the vortex shedding characteristics, which are different from those at a stationary state

    Research on ventilation and supercavitation mechanism of high-speed surface-piercing hydrofoil

    No full text
    Flow structures and hydrodynamic performance of high-speed surface-piercing hydrofoils were studied by numerical simulation, with an emphasis on the interaction mechanism between supercavitation and natural ventilation. Compared with the available experimental data, the numerical method could predict the cavitation and ventilation well. The numerical simulation results show that the flow over hydrofoil with blunt trailing edge is more conducive to separating. The semi-ogive hydrofoil was used to explore the influence of angles of attack on ventilation and cavitation. The ventilation rate increases with the increase in the angles of attack. At small attack angles (alpha = 0 & DEG; and 2 & DEG;), the regional ventilated flow is found in supercavitation. The vortex street structures and twin vortices closure mode are formed in the closure region of the supercavity. At moderate attack angles (alpha = 6 & DEG; and 10 & DEG;), the thickness of the undisturbed liquid sheet (delta) becomes thinner and the natural supercavitation transits to fully ventilated supercavitation through the cavitation-induced ventilation, but the ventilation position is different because of Taylor instability. The hydrodynamic coefficients remain relatively stable in natural supercavitation and the lift coefficient reduce to half of the original value when the supercavitation is fully ventilated, which are caused by the pressure changes on the suction and pressure surfaces.& nbsp;& nbsp;(c)& nbsp;2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    Smoothly Transitive Fixed Frequency Hysteresis Current Control Based on Optimal Voltage Space Vector

    No full text
    This paper proposes a smoothly transitive fixed frequency hysteresis current control (ST-FHCC) scheme applied to an active power filter (APF). First of all, a switching fixed frequency hysteresis current control (S-FHCC) is introduced, which is based on phase-to-phase decoupling and switching the control strategies under mode 0 or mode 1, and its weakness is described in detail. To enhance it, an improved approach of regulating the hysteresis bandwidth is presented to fix the switching frequency with switch phases being regulated, based on the optimal voltage space vector (OVSV). Furthermore, a flexible division of the voltage-space-vectors diagram is developed to divide the original voltage-space-vectors diagram into six sub-regions, upon which the control strategies under mode 0 and mode 1 can be switched alternately in order to obtain a smooth transition. As a consequence, ST-FHCC can thoroughly avoid the inherent weakness of S-FHCC of switching that is not smooth as a result of the low control accuracy of current errors. Case studies are carried out through power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC) while simulation results verify the effectiveness and superiority of ST-FHCC compared to S-FHCC

    Fault-Tolerant Virtual Backbone in Heterogeneous Wireless Sensor Network

    No full text
    corecore