72,478 research outputs found

    Delay-dependent exponential stability of neutral stochastic delay systems

    Get PDF
    This paper studies stability of neutral stochastic delay systems by linear matrix inequality (LMI) approach. Delay dependent criterion for exponential stability is presented and numerical examples are conducted to verify the effectiveness of the proposed method

    Dynamics of quantum-classical hybrid system: effect of matter-wave pressure

    Full text link
    Radiation pressure affects the kinetics of a system exposed to the radiation and it constitutes the basis of laser cooling. In this paper, we study {\it matter-wave pressure} through examining the dynamics of a quantum-classical hybrid system. The quantum and classical subsystem have no explicit coupling to each other, but affect mutually via a changing boundary condition. Two systems, i.e., an atom and a Bose-Einstein condensate(BEC), are considered as the quantum subsystems, while an oscillating wall is taken as the classical subsystem. We show that the classical subsystem would experience a force proportional to Q3Q^{-3} from the quantum atom, whereas it acquires an additional force proportional to Q2Q^{-2} from the BEC due to the atom-atom interaction in the BEC. These forces can be understood as the {\it matter-wave pressure}.Comment: 7 pages, 6 figue

    Quantum Brayton cycle with coupled systems as working substance

    Full text link
    We explore the quantum version of Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process, one corresponds to the external magnetic field (characterized by FxF_x) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by FyF_y). As a consequence, we can define two types of quantum Brayton cycle for the composite system. We find that the subsystem experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized by FxF_x), whereas the subsystem's cycle is of quantum Otto in another Brayton cycle (characterized by FyF_y). The efficiency for the composite system equals to that for the subsystem in both cases, but the work done by the total system are usually larger than the sum of work done by the two subsystems. The other interesting finding is that for the cycle characterized by FyF_y, the subsystem can be a refrigerator while the total system is a heat engine. The result in the paper can be generalized to a quantum Brayton cycle with a general coupled system as the working substance.Comment: 7 pages, 3 figures, accepted by Phys. Rev.

    Template epitaxial growth of thermoelectric Bi/BiSb superlattice nanowires by charge-controlled pulse electrodeposition

    Get PDF
    © The Electrochemical Society, Inc. 2009. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in The Journal of The Electrochemical Society, 156(9), 2009.Bi/BiSb superlattice nanowires (SLNWs) with a controllable and very small bilayer thickness and a sharp segment interface were grown by adopting a charge-controlled pulse electrodeposition. The deposition parameters were optimized to ensure an epitaxial growth of the SLNWs with a preferential orientation. The segment length and bilayer thickness of the SLNWs can be controlled simply by changing the modulating time, and the consistency of the segment length can be well maintained by our approach. The Bravais law in the electrodeposited nanowires is verified by the SLNW structure. The current–voltage measurement shows that the SLNWs have good electrical conductance, particularly those with a smaller bilayer thickness. The Bi/BiSb SLNWs might have excellent thermoelectric performances.National Natural Science Foundation of China and the National Major Project of Fundamental Research for Nanomaterials and Nanostructures
    corecore