1,295 research outputs found

    Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators

    Full text link
    Spatially confined rigid membranes reorganize their morphology in response to the imposed constraints. A crumpled elastic sheet presents a complex pattern of random folds focusing the deformation energy while compressing a membrane resting on a soft foundation creates a regular pattern of sinusoidal wrinkles with a broad distribution of energy. Here, we study the energy distribution for highly confined membranes and show the emergence of a new morphological instability triggered by a period-doubling bifurcation. A periodic self-organized focalization of the deformation energy is observed provided an up-down symmetry breaking, induced by the intrinsic nonlinearity of the elasticity equations, occurs. The physical model, exhibiting an analogy with parametric resonance in nonlinear oscillator, is a new theoretical toolkit to understand the morphology of various confined systems, such as coated materials or living tissues, e.g., wrinkled skin, internal structure of lungs, internal elastica of an artery, brain convolutions or formation of fingerprints. Moreover, it opens the way to new kind of microfabrication design of multiperiodic or chaotic (aperiodic) surface topography via self-organization.Comment: Submitted for publicatio

    Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter

    Full text link
    The design is suggested, and possible operation parameters are discussed, of an instrument to inspect a skin cancer tumour in the terahertz (THz) range, transferring the image into the infrared (IR) and making it visible with the help of standard IR camera. The central element of the device is the THz-to-IR converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold nanoparticles. The use of external THz source for irradiating the biological tissue sample is presumed. The converter's temporal characteristics enable its performance in a real-time scale. The details of design suited for the operation in transmission mode (in vitro) or on the human skin in reflection mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk, 3-5 June 201

    Phonon-assisted radiofrequency absorption by gold nanoparticles resulting in hyperthermia

    Full text link
    It is suggested that in gold nanoparticles (GNPs) of about 5 nm sizes used in the radiofrequency (RF) hyperthermia, an absorption of the RF photon by the Fermi electron occurs with involvement of the longitudinal acoustic vibrational mode (LAVM), the dominating one in the distribution of vibrational density of states (VDOS). This physical mechanism helps to explain two observed phenomena: the size dependence of the heating rate (HR) in GNPs and reduced heat production in aggregated GNPs. The argumentation proceeds within the one-electron approximation, taking into account the discretenesses of energies and momenta of both electrons and LAVMs. The heating of GNPs is thought to consist of two consecutive processes: first, the Fermi electron absorbs simultaneously the RF photon and the LAVM available in the GNP; hereafter the excited electron gets relaxed within the GNP's boundary, exciting a LAVM with the energy higher than that of the previously absorbed LAVM. GNPs containing the Ta and/or Fe impurities are proposed for the RF hyperthermia as promising heaters with enhanced HRs, and GNPs with rare-earth impurity atoms are also brought into consideration. It is shown why the maximum HR values should be expected in GNPs with about 5-7 nm size.Comment: proceedings at the NATO Advanced Research workshop FANEM-2015 (Minsk, May 25-27, 2015). To be published in the final form in: "Fundamental and Applied NanoElectroMagnetics" (Springer Science + Business Media B.V.

    Preferential risk of HPV16 for squamous cell carcinoma and of HPV18 for adenocarcinoma of the cervix compared to women with normal cytology in The Netherlands

    Get PDF
    We present the type-distribution of high-risk human papillomavirus (HPV) types in women with normal cytology (n=1467), adenocarcinoma in situ (ACIS) (n=61), adenocarcinoma (n=70), and squamous cell carcinoma (SCC) (n=83). Cervical adenocarcinoma and ACIS were significantly more frequently associated with HPV18 (ORMH 15.0; 95% CI 8.6–26.1 and 21.8; 95% CI 11.9–39.8, respectively) than normal cytology. Human papillomavirus16 was only associated with adenocarcinoma and ACIS after exclusion of HPV18-positive cases (ORMH 6.6; 95% CI 2.8–16.0 and 9.4; 95% CI 2.8–31.2, respectively). For SCC, HPV16 prevalence was elevated (ORMH 7.0; 95% CI 3.9–12.4) compared to cases with normal cytology, and HPV18 prevalence was only increased after exclusion of HPV16-positive cases (ORMH 4.3; 95% CI 1.6–11.6). These results suggest that HPV18 is mainly a risk factor for the development of adenocarcinoma whereas HPV16 is associated with both SCC and adenocarcinoma

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Adolescent Binge Drinking Leads to Changes in Alcohol Drinking, Anxiety, and Amygdalar Corticotropin Releasing Factor Cells in Adulthood in Male Rats

    Get PDF
    Heavy episodic drinking early in adolescence is associated with increased risk of addiction and other stress-related disorders later in life. This suggests that adolescent alcohol abuse is an early marker of innate vulnerability and/or binge exposure impacts the developing brain to increase vulnerability to these disorders in adulthood. Animal models are ideal for clarifying the relationship between adolescent and adult alcohol abuse, but we show that methods of involuntary alcohol exposure are not effective. We describe an operant model that uses multiple bouts of intermittent access to sweetened alcohol to elicit voluntary binge alcohol drinking early in adolescence (∼postnatal days 28–42) in genetically heterogeneous male Wistar rats. We next examined the effects of adolescent binge drinking on alcohol drinking and anxiety-like behavior in dependent and non-dependent adult rats, and counted corticotropin-releasing factor (CRF) cell in the lateral portion of the central amygdala (CeA), a region that contributes to regulation of anxiety- and alcohol-related behaviors. Adolescent binge drinking did not alter alcohol drinking under baseline drinking conditions in adulthood. However, alcohol-dependent and non-dependent adult rats with a history of adolescent alcohol binge drinking did exhibit increased alcohol drinking when access to alcohol was intermittent. Adult rats that binged alcohol during adolescence exhibited increased exploration on the open arms of the elevated plus maze (possibly indicating either decreased anxiety or increased impulsivity), an effect that was reversed by a history of alcohol dependence during adulthood. Finally, CRF cell counts were reduced in the lateral CeA of rats with adolescent alcohol binge history, suggesting semi-permanent changes in the limbic stress peptide system with this treatment. These data suggest that voluntary binge drinking during early adolescence produces long-lasting neural and behavioral effects with implications for anxiety and alcohol use disorders

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres
    • …
    corecore