81,432 research outputs found

    Control of tetrahedral coordination and superconductivity in FeSe0.5Te0.5 thin films

    Full text link
    We demonstrate a close relationship between superconductivity and the dimensions of the Fe-Se(Te) tetrahedron in FeSe0.5Te0.5. This is done by exploiting thin film epitaxy, which provides controlled biaxial stress, both compressive and tensile, to distort the tetrahedron. The Se/Te height within the tetrahedron is found to be of crucial importance to superconductivity, in agreement with the theoretical proposal that (pi,pi) spin fluctuations promote superconductivity in Fe superconductors

    Entropy and specific heat for open systems in steady states

    Full text link
    The fundamental assumption of statistical mechanics is that the system is equally likely in any of the accessible microstates. Based on this assumption, the Boltzmann distribution is derived and the full theory of statistical thermodynamics can be built. In this paper, we show that the Boltzmann distribution in general can not describe the steady state of open system. Based on the effective Hamiltonian approach, we calculate the specific heat, the free energy and the entropy for an open system in steady states. Examples are illustrated and discussed.Comment: 4 pages, 7 figure

    The driven-Markovian master equation based on the Lewis-Riesenfeld invariants theory

    Full text link
    We derive a Markovian master equation for driven open quantum systems based on the Lewis-Riesenfeld invariants theory, which is available for arbitrary driving protocols.The role of the Lewis-Riesenfeld invariants is to help us bypass the time-ordering obstacle in expanding the propagator of the free dynamics, such that the Lindblad operators in our driven-Markovian master equation can be determined easily. We also illustrate that, for the driven open quantum systems, the spontaneous emission and the thermal excitation induce the transitions between eigenstates of the Lewis-Riesenfeld invariant, but not the system Hamiltonian's. As an example, we present the driven-Markovian master equation for a driven two-level system coupled to a heat reservoir. By comparing to the exactly solvable models, the availability of the driven-Markovian master equation is verified. Meanwhile, the adiabatic limit and inertial limit of the driven-Markovian master equation are also discussed, which result in the same Markovian master equations as those presented before in the corresponding limits.Comment: Including Erratum of Phys. Rev. A 106, 052217 (2022

    Quantum state engineering with flux-biased Josephson phase qubits by Stark-chirped rapid adiabatic passages

    Full text link
    In this paper, the scheme of quantum computing based on Stark chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei et al., Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement the quantum-state manipulations in the flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark-shifts. Then, assisted by various transition pulses universal quantum logic gates as well as arbitrary quantum-state preparations could be implemented. Compared with the usual PI-pulses operations widely used in the experiments, the adiabatic population passage proposed here is insensitive the details of the applied pulses and thus the desirable population transfers could be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.Comment: 9 pages, 4 figure

    Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems

    Full text link
    We study the quantum-jump-based feedback control on the entanglement shared between two qubits with one of them subject to decoherence, while the other qubit is under the control. This situation is very relevant to a quantum system consisting of nuclear and electron spins in solid states. The possibility to prolong the coherence time of the dissipative qubit is also explored. Numerical simulations show that the quantum-jump-based feedback control can improve the entanglement between the qubits and prolong the coherence time for the qubit subject directly to decoherence
    • …
    corecore