1 research outputs found

    Thermodynamic properties of Ba1-xMxFe2As2 (M = La and K)

    Full text link
    The specific heat C(T)C(T) of BaFe2_2As2_2 single crystal, electron-doped Ba0.7_{0.7}La0.3_{0.3}Fe2_2As2_2 and hole-doped Ba0.5_{0.5}K0.5_{0.5}Fe2_2As2_2 polycrystals were measured. For undoped BaFe2_2As2_2 single crystal, a very sharp specific heat peak was observed at 136 K. This is attributed to the structural and antiferromagnetic transitions occurring at the same temperature. C(T)C(T) of the electron-doped non-superconducting Ba0.7_{0.7}La0.3_{0.3}Fe2_2As2_2 also shows a small peak at 120 K, indicating a similar but weaker structural/antiferromagnetic transition. For the hole-doped superconducting Ba0.5_{0.5}K0.5_{0.5}Fe2_2As2_2, a clear peak of C/TC/T was observed at TcT_c = 36 K, which is the highest peak seen at superconducting transition for iron-based high-TcT_c superconductors so far. The electronic specific heat coefficient γ\gamma and Debye temperature ΘD\Theta_D of these compounds were obtained from the low temperature data
    corecore