3,183 research outputs found
Garment patterns generating based on 3-D body scanning
2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Clinical features and pitfalls in the laboratory diagnosis of dengue in travellers
BACKGROUND: Several enzyme-linked immunosorbent assay (ELISA)-kits are commercially available for the rapid diagnosis of dengue infection, and have demonstrated good sensitivity and specificity in paired serum samples. In practice, however, often only one blood sample is available from febrile travellers returning from dengue endemic areas. METHODS: To evaluate the diagnostic value of positive dengue antibody-titres performed by a standard ELISA (PanBio IgM- and IgG-ELISA) in single serum samples (regarded as "probable infection"), 127 positive samples were further analyzed using envelope/membrane IgM-, and nonstructural protein 1 IgM- and IgG-ELISAs, immunofluorescence assays, and real-time reverse transcription polymerase chain reaction assays (RT-PCR). A combination of the test-results served as the diagnostic "gold standard". A total of 1,035 febrile travellers returning from dengue-endemic countries with negative dengue-serology and RT-PCR served as controls to compare clinical and haematological features. RESULTS: Overall, only 64 (positive predictive value = 50%) of the probable cases were confirmed by additional analysis and 54 (42.5%) were confirmed to be "false-positive". Rash was the only clinical feature significantly associated with confirmed dengue fever. The combination of thrombocytopenia and leucopenia was present in 40.4% of confirmed and in 6.1% of false-positive cases. Thus, the positive predictive value for the combination of positive PanBio-ELISA plus the two haematological features was 90.5%. CONCLUSION: The examination of paired serum samples is considered the most reliable serodiagnostic procedure for dengue. However, if only one blood sample is available, a single positive ELISA-result carries a high rate of false-positivity and should be confirmed using a second and more specific diagnostic technique. In the absence of further testing, platelet and white blood cell counts are helpful for the correct interpretation
Establishing production service system and information collaboration platform for mold and die products
This paper investigates how the new concept of product service systems can be used and extended to transform, elevate, and revitalize traditional equipment manufacturing industry such as the Mold and Die (MD) sector. A mold and die production service systems (MPSS) framework is established based on recent developments within our industrial collaborators. Within the MPSS framework, MD manufacturers become more specialized in producing MD products and components while sharing and outsourcing manufacturing-oriented services (MOS) from a service provider. Typical services include collaborative order pooling and release, collaborative project progress status tracking, contractor-managed collaborative outsourcing, collaborative product design, collaborative production planning and scheduling, and after-sales technical supports. MOSs are designed, developed, and deployed as SaaS (software as application services) following the service-oriented architecture. Collectively, they form iMPSS-an Information and Collaboration Platform that enables MPSS. The use of iMPSS leads to benefits for stakeholders involved in providing mold and die functionality including better shopfloor decisions and reduced IT investments. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201
Flexible High-Conductivity Carbon-Nanotube Interconnects Made by Rolling and Printing
Applications of carbon nanotubes (CNTs) in flexible and complementary metal-oxide-semiconductor (CMOS)-based electronic and energy devices are impeded due to typically low CNT areal densities, growth temperatures that are incompatible with device substrates, and challenges in large-area alignment and interconnection. A scalable method for continuous fabrication and transfer printing of dense horizontally aligned CNT (HA-CNT) ribbon interconnects is presented. The process combines vertically aligned CNT (VA-CNT) growth by thermal chemical vapor deposition, a novel mechanical rolling process to transform the VA-CNTs to HA-CNTs, and adhesion-controlled transfer printing without needing a carrier film. The rolling force determines the HA-CNT packing fraction and the HA-CNTs are processed by conventional lithography. An electrical resistivity of 2 mΩ · cm is measured for ribbons having 800-nm thickness, while the resistivity of copper is 100 times lower, a value that exceeds most CNT assemblies made to date, and significant improvements can be made in CNT structural quality. This rolling and printing process could be scaled to full wafer areas and more complex architectures such as continuous CNT sheets and multidirectional patterns could be achieved by straightforward design of the CNT growth process and/or multiple rolling and printing sequences.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64295/1/2467_ftp.pd
ONLINE FLOW-INJECTION COBALT-AMMONIUM PYRROLIDIN-1-YLDITHIOFORMATE COPRECIPITATION FOR PRECONCENTRATION OF TRACE AMOUNTS OF METALS IN WATERS WITH SIMULTANEOUS DETERMINATION BY INDUCTIVELY-COUPLED PLASMA-ATOMIC EMISSION-SPECTROMETRY
The technique of on-line flow injection (FI) cobalt-ammonium pyrrolidin-1-yldithioformate (Co-APDC) coprecipitation for the preconcentration of trace amounts of the heavy metals Cd, Cu, Fe, Ni, Pb and Zn in rain water samples with simultaneous determination by inductively coupled plasma atomic emission spectrometry (KP-AES) has been developed. A precipitate collector system, consisting of a poly(tetrafluoroethylene) (PTFE) membrane on a polypropylene support filtering device combined with a 1.5 m reaction coil, was selected. An inorganic solution of concentrated nitric acid and hydrogen peroxide was applied as the dissolution reagent. The technique is characterized by high retention efficiency (which ranged from 77 to 99% for the six elements of interest), good enrichment factors (ranging from 10 to 50 for 100 s preconcentration depending on the elements studied) and satisfactory accuracy and precision (recoveries from two standard additions to a rain sample ranged from 92 to 104%, with relative standard deviations ranging from 1.9 to 5%). The sample throughput is 20 per hour
Sodium Coupled Bicarbonate Influx Regulates Intracellular and Apical pH in Cultured Rat Caput Epididymal Epithelium
The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis.Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH.The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium
Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition
The strong interest in graphene has motivated the scalable production of high
quality graphene and graphene devices. Since large-scale graphene films
synthesized to date are typically polycrystalline, it is important to
characterize and control grain boundaries, generally believed to degrade
graphene quality. Here we study single-crystal graphene grains synthesized by
ambient CVD on polycrystalline Cu, and show how individual boundaries between
coalescing grains affect graphene's electronic properties. The graphene grains
show no definite epitaxial relationship with the Cu substrate, and can cross Cu
grain boundaries. The edges of these grains are found to be predominantly
parallel to zigzag directions. We show that grain boundaries give a significant
Raman "D" peak, impede electrical transport, and induce prominent weak
localization indicative of intervalley scattering in graphene. Finally, we
demonstrate an approach using pre-patterned growth seeds to control graphene
nucleation, opening a route towards scalable fabrication of single-crystal
graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
- …