125,494 research outputs found

    Transition Temperature of a Uniform Imperfect Bose Gas

    Full text link
    We calculate the transition temperature of a uniform dilute Bose gas with repulsive interactions, using a known virial expansion of the equation of state. We find that the transition temperature is higher than that of an ideal gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a is the S-wave scattering length, and K_0 is a constant given in the paper. This disagrees with all existing results, analytical or numerical. It agrees exactly in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe

    Linear Precoding in Cooperative MIMO Cellular Networks with Limited Coordination Clusters

    Full text link
    In a cooperative multiple-antenna downlink cellular network, maximization of a concave function of user rates is considered. A new linear precoding technique called soft interference nulling (SIN) is proposed, which performs at least as well as zero-forcing (ZF) beamforming. All base stations share channel state information, but each user's message is only routed to those that participate in the user's coordination cluster. SIN precoding is particularly useful when clusters of limited sizes overlap in the network, in which case traditional techniques such as dirty paper coding or ZF do not directly apply. The SIN precoder is computed by solving a sequence of convex optimization problems. SIN under partial network coordination can outperform ZF under full network coordination at moderate SNRs. Under overlapping coordination clusters, SIN precoding achieves considerably higher throughput compared to myopic ZF, especially when the clusters are large.Comment: 13 pages, 5 figure

    GRB afterglows: deep Newtonian phase and its application

    Get PDF
    Gamma-ray burst afterglows have been observed for months or even years in a few cases. It deserves noting that at such late stages, the remnants should have entered the deep Newtonian phase, during which the majority of shock-accelerated electrons will no longer be highly relativistic. To calculate the afterglows, we must assume that the electrons obey a power-law distribution according to their kinetic energy, not simply the Lorentz factor.Comment: Poster at the 4th workshop "Gamma-Ray Bursts in the Afterglow Era" (Rome, 2004), accepted for publication in the proceedings. 4 pages, with 3 figures inserte

    A question of scale

    Full text link
    If you search for 'collective behaviour' with your web browser most of the texts popping up will be about group activities of humans, including riots, fashion and mass panic. Nevertheless, collective behaviour is also considered to be an important aspect of observed phenomena in atoms and molecules, for example, during spontaneous magnetization. In your web search, you might also find articles on collectively migrating bacteria, insects or birds; or phenomena where groups of organisms or non- living objects synchronize their signals or motion (think of fireflies flashing in unison or people clapping in phase during rhythmic applause).Comment: Concepts essay, published in Nature http://www.nature.com/nature/journal/v411/n6836/full/411421a0.htm

    Beaming effects in GRBs and orphan afterglows

    Full text link
    The overall dynamical evolution and radiation mechanism of γ\gamma-ray burst jets are briefly introduced. Various interesting topics concerning beaming in γ\gamma-ray bursts are discussed, including jet structures, orphan afterglows and cylindrical jets. The possible connection between γ\gamma-ray bursts and neutron star kicks is also addressed.Comment: 10 Pages, 4 figures, to appear in a special issue of ApSS. Oral report presented at "The Multiwavelength Approach to Unidentified Gamma-Ray Sources" (Hong Kong, June 1 - 4, 2004; Conference organizers: K.S. Cheng and G.E. Romero

    Momentum Distribution for Bosons with Positive Scattering Length in a Trap

    Full text link
    The coordinate-momentum double distribution function ρ(r,p)d3rd3p\rho ({\bf r}, {\bf p}) d^{3}rd^{3}p is calculated in the local density approximation for bosons with positive scattering length aa in a trap. The calculation is valid to the first order of aa. To clarify the meaning of the result, it is compared for a special case with the double distribution function ρwd3rd3p\rho_{w}d^{3} rd^{3}p of Wigner.Comment: Latex fil
    corecore