82,705 research outputs found

    A Study of Anyon Statistics by Breit Hamiltonian Formalism

    Get PDF
    We study the anyon statistics of a 2+12 + 1 dimensional Maxwell-Chern-Simons (MCS) gauge theory by using a systemmetic metheod, the Breit Hamiltonian formalism.Comment: 25 pages, LATE

    Lattice Statistics in Three Dimensions: Exact Solution of Layered Dimer and Layered Domain Wall Models

    Full text link
    Exact analyses are given for two three-dimensional lattice systems: A system of close-packed dimers placed in layers of honeycomb lattices and a layered triangular-lattice interacting domain wall model, both with nontrivial interlayer interactions. We show that both models are equivalent to a 5-vertex model on the square lattice with interlayer vertex-vertex interactions. Using the method of Bethe ansatz, a closed-form expression for the free energy is obtained and analyzed. We deduce the exact phase diagram and determine the nature of the phase transitions as a function of the strength of the interlayer interaction.Comment: 22 pages in Revtex, 6 PS files, submitted to PR

    Exact Solution of a Three-Dimensional Dimer System

    Full text link
    We consider a three-dimensional lattice model consisting of layers of vertex models coupled with interlayer interactions. For a particular non-trivial interlayer interaction between charge-conserving vertex models and using a transfer matrix approach, we show that the eigenvalues and eigenvectors of the transfer matrix are related to those of the two-dimensional vertex model. The result is applied to analyze the phase transitions in a realistic three-dimensional dimer system.Comment: 11 pages in REVTex with 2 PS figure

    Energy Efficient User Association and Power Allocation in Millimeter Wave Based Ultra Dense Networks with Energy Harvesting Base Stations

    Full text link
    Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem is modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and the effectiveness of the proposed scheme compared with existing methods is verified by simulations.Comment: to appear, IEEE Journal on Selected Areas in Communications, 201

    Improved approach to the heavy-to-light form factors in the light-cone QCD sum

    Full text link
    A systematic analysis shows that the main uncertainties in the form factors are due to the twist-3 wave functions of the light mesons in the light-cone QCD sum rules. We propose an improved approach, in which the twist-3 wave functions doesn't make any contribution and therefore the possible pollution by them can be avoided, to re-examine BπB \to \pi semileptonic form factors. Also, a comparison between the previous and our results from the light-cone QCD sum rules is made. Our method will be beneficial to the precise extracting of Vub\mid{V_{ub}}\mid from the experimental data on the processes Bπν~B \to \pi \ell \widetilde{\nu_\ell}.Comment: New version to appear in PR

    Isobar of an ideal Bose gas within the grand canonical ensemble

    Full text link
    We investigate the isobar of an ideal Bose gas confined in a cubic box within the grand canonical ensemble, for a large yet finite number of particles, N. After solving the equation of the spinodal curve, we derive precise formulae for the supercooling and the superheating temperatures which reveal an N^{-1/3} or N^{-1/4} power correction to the known Bose-Einstein condensation temperature in the thermodynamic limit. Numerical computations confirm the accuracy of our analytical approximation, and further show that the isobar zigzags on the temperature-volume plane if N is greater than or equal to 14393. In particular, for the Avogadro's number of particles, the volume expands discretely about 10^5 times. Our results quantitatively agree with a previous study on the canonical ensemble within 0.1% error.Comment: 6 pages, 2 figures; Reference added. Accepted for publication in Phys. Rev.

    Bose-Einstein Condensation Temperature of Homogenous Weakly Interacting Bose Gas in Variational Perturbation Theory Through Seven Loops

    Full text link
    The shift of the Bose-Einstein condensation temperature for a homogenous weakly interacting Bose gas in leading order in the scattering length `a' is computed for given particle density `n.' Variational perturbation theory is used to resum the corresponding perturbative series for Delta/Nu in a classical three-dimensional scalar field theory with coupling `u' and where the physical case of N=2 field components is generalized to arbitrary N. Our results for N=1,2,4 are in agreement with recent Monte-Carlo simulations; for N=2, we obtain Delta T_c/T_c = 1.27 +/- 0.11 a n^(1/3). We use seven-loop perturbative coefficients, extending earlier work by one loop order.Comment: 8 pages; typos and errors of presentation fixed; beautifications; results unchange
    corecore