65,123 research outputs found

    The tensor structure on the representation category of the Wp\mathcal{W}_p triplet algebra

    Full text link
    We study the braided monoidal structure that the fusion product induces on the abelian category Wp\mathcal{W}_p-mod, the category of representations of the triplet WW-algebra Wp\mathcal{W}_p. The Wp\mathcal{W}_p-algebras are a family of vertex operator algebras that form the simplest known examples of symmetry algebras of logarithmic conformal field theories. We formalise the methods for computing fusion products, developed by Nahm, Gaberdiel and Kausch, that are widely used in the physics literature and illustrate a systematic approach to calculating fusion products in non-semi-simple representation categories. We apply these methods to the braided monoidal structure of Wp\mathcal{W}_p-mod, previously constructed by Huang, Lepowsky and Zhang, to prove that this braided monoidal structure is rigid. The rigidity of Wp\mathcal{W}_p-mod allows us to prove explicit formulae for the fusion product on the set of all simple and all projective Wp\mathcal{W}_p-modules, which were first conjectured by Fuchs, Hwang, Semikhatov and Tipunin; and Gaberdiel and Runkel.Comment: 58 pages; edit: added references and revisions according to referee reports. Version to appear on J. Phys.

    Markov quantum fields on a manifold

    Full text link
    We study scalar quantum field theory on a compact manifold. The free theory is defined in terms of functional integrals. For positive mass it is shown to have the Markov property in the sense of Nelson. This property is used to establish a reflection positivity result when the manifold has a reflection symmetry. In dimension d=2 we use the Markov property to establish a sewing operation for manifolds with boundary circles. Also in d=2 the Markov property is proved for interacting fields.Comment: 14 pages, 1 figure, Late

    Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials

    Full text link
    Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities for characterizing and designing nonlinear nanodevices.Comment: 11 pages, 14 figure

    An energetic blast wave from the December 27 giant flare of the soft gamma-ray repeater 1806-20

    Full text link
    Recent follow-up observations of the December 27 giant flare of SGR 1806-20 have detected a multiple-frequency radio afterglow from 240 MHz to 8.46 GHz, extending in time from a week to about a month after the flare. The angular size of the source was also measured for the first time. Here we show that this radio afterglow gives the first piece of clear evidence that an energetic blast wave sweeps up its surrounding medium and produces a synchrotron afterglow, the same mechanism as established for gamma-ray burst afterglows. The optical afterglow is expected to be intrinsically as bright as mR≃13m_R\simeq13 at t\la 0.1 days after the flare, but very heavy extinction makes the detection difficult because of the low galactic latitude of the source. Rapid infrared follow-up observations to giant flares are therefore crucial for the low-latitude SGRs, while for high-latitude SGRs (e.g. SGR 0526-66), rapid follow-ups should result in identification of their possible optical afterglows. Rapid multi-wavelength follow-ups will also provide more detailed information of the early evolution of a fireball as well as its composition.Comment: Updated version, accepted for publication in ApJ Letter

    A Two-Component Explosion Model for the Giant Flare and Radio Afterglow from SGR1806-20

    Full text link
    The brightest giant flare from the soft γ\gamma-ray repeater (SGR) 1806-20 was detected on 2004 December 27. The isotropic-equivalent energy release of this burst is at least one order of magnitude more energetic than those of the two other SGR giant flares. Starting from about one week after the burst, a very bright (∼80\sim 80 mJy), fading radio afterglow was detected. Follow-up observations revealed the multi-frequency light curves of the afterglow and the temporal evolution of the source size. Here we show that these observations can be understood in a two-component explosion model. In this model, one component is a relativistic collimated outflow responsible for the initial giant flare and the early afterglow, and another component is a subrelativistic wider outflow responsible for the late afterglow. We also discuss triggering mechanisms of these two components within the framework of the magnetar model.Comment: 7 pages including 3 figures, emulateapj5.sty, accepted for publication in ApJ Letter

    Nuclear Chemical and Mechanical Instability and the Liquid-Gas Phase Transition in Nuclei

    Full text link
    The thermodynamic properties of nuclei are studied in a mean field model using a Skryme interaction. Properties of two component systems are investigated over the complete range of proton fraction from a system of pure neutrons to a system of only protons. Besides volume, symmetry, and Coulomb effects we also include momentum or velocity dependent forces. Applications of the results developed are then given which include nuclear mechanical and chemical instability and an associated liquid/gas phase transition in two component systems. The velocity dependence leads to further changes in the coexistence curve and nuclear mechanical and chemical instability curves.Comment: 21 pages, 9 figures, Results are changed due to error in progra

    Transition amplitudes and sewing properties for bosons on the Riemann sphere

    Full text link
    We consider scalar quantum fields on the sphere, both massive and massless. In the massive case we show that the correlation functions define amplitudes which are trace class operators between tensor products of a fixed Hilbert space. We also establish certain sewing properties between these operators. In the massless case we consider exponential fields and have a conformal field theory. In this case the amplitudes are only bilinear forms but still we establish sewing properties. Our results are obtained in a functional integral framework.Comment: 33 page

    On Gravitational anomaly and Hawking radiation near weakly isolated horizon

    Full text link
    Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near weekly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of black hole horizon.Comment: 14 page
    • …
    corecore