86,818 research outputs found
Spin-polarized quasiparticle transport in cuprate superconductors
The effects of spin-polarized quasiparticle transport in superconducting YBa2Cu3O7-delta (YBCO) epitaxial films are investigated by means of current injection into perovskite ferromagnet-insulator-superconductor (F-I-S) heterostructures. These effects are compared with the injection of simple quasiparticles into control samples of perovskite nonmagnetic metal-insulator-superconductor (N-I-S). Systematic studies of the critical current density (J(c)) as a function of the injection current density (J(inj)), temperature (T), and the thickness (d) of the superconductor reveal drastic differences between the F-I-S and N-I-S heterostructures, with strong suppression of J(c) and a rapidly increasing characteristic transport length near the superconducting transition temperature T-c only in the F-I-S samples. The temperature dependence of the efficiency (etaequivalent toDeltaJ(c)/J(inj); DeltaJ(c): the suppression of critical current due to finite J(inj)) in the F-I-S samples is also in sharp contrast to that in the N-I-S samples, suggesting significant redistribution of quasiparticles in F-I-S due to the longer lifetime of spin-polarized quasiparticles. Application of conventional theory for nonequilibrium superconductivity to these data further reveal that a substantial chemical potential shift mu(*) in F-I-S samples must be invoked to account for the experimental observation, whereas no discernible chemical potential shift exists in the N-I-S samples, suggesting strong effects of spin-polarized quasiparticles on cuprate superconductivity. The characteristic times estimated from our studies are suggestive of anisotropic spin relaxation processes, possibly with spin-orbit interaction dominating the c-axis spin transport and exchange interaction prevailing within the CuO2 planes. Several alternative scenarios attempted to account for the suppression of critical currents in F-I-S samples are also critically examined, and are found to be neither compatible with experimental data nor with the established theory of nonequilibrium superconductivity
The Differences of Star Formation History Between Merging Galaxies and Field Galaxies in the EDR of the SDSS
Based on the catalog of merging galaxies in the Early Data Release (EDR) of
the Sloan Digital Sky Survey (SDSS), the differences of star formation history
between merging galaxies and field galaxies are studied statistically by means
of three spectroscopic indicators the 4000-\r{A} break strength, the Balmer
absorption-line index, and the specific star formation rate. It is found that
for early-type merging galaxies the interactions will not induce significant
enhancement of the star-formation activity because of its stability and lack of
cool gas. On the other hand, late-type merging galaxies always in general
display more active star formation than field galaxies on different timescales
within about 1Gyr. We also conclude that the mean stellar ages of late-type
merging galaxies are younger than those of late-type field galaxies.Comment: 9 pages, 4 figures, accepted for publication in PAS
Vertex operator algebras and operads
Vertex operator algebras are mathematically rigorous objects corresponding to
chiral algebras in conformal field theory. Operads are mathematical devices to
describe operations, that is, -ary operations for all greater than or
equal to , not just binary products. In this paper, a reformulation of the
notion of vertex operator algebra in terms of operads is presented. This
reformulation shows that the rich geometric structure revealed in the study of
conformal field theory and the rich algebraic structure of the theory of vertex
operator algebras share a precise common foundation in basic operations
associated with a certain kind of (two-dimensional) ``complex'' geometric
object, in the sense in which classical algebraic structures (groups, algebras,
Lie algebras and the like) are always implicitly based on (one-dimensional)
``real'' geometric objects. In effect, the standard analogy between
point-particle theory and string theory is being shown to manifest itself at a
more fundamental mathematical level.Comment: 16 pages. Only the definitions of "partial operad" and of "rescaling
group" have been improve
- …