43,919 research outputs found

    A Model of Low-lying States in Strongly Interacting Electroweak Symmetry-Breaking Sector

    Full text link
    It is proposed that, in a strongly-interacting electroweak sector, besides the Goldstone bosons, the coexistence of a scalar state (HH) and vector resonances such as A1A_1 [IG(JP)=1−(1+I^G(J^P)=1^-(1^+)], VV [1+(1−)1^+(1^-)] and ωH\omega_H^{} [0−(1−)0^-(1^-)] is required by the proper Regge behavior of the forward scattering amplitudes. This is a consequence of the following well-motivated assumptions: (a). Adler-Weisberger-type sum rules and the superconvergence relations for scattering amplitudes hold in this strongly interacting sector; (b). the sum rules at t=0t=0 are saturated by a minimal set of low-lying states with appropriate quantum numbers. It therefore suggests that a complete description should include all these resonances. These states may lead to distinctive experimental signatures at future colliders.Comment: revised version, to appear in Modern Physics Letters A; file also available via anonymous ftp at ftp://ucdhep.ucdavis.edu/han/sews/lowlying.p

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    Electronic structure and superconductivity of BiS2-based compounds LaO1-xFxBiS2

    Full text link
    Using the density-functional perturbation theory with structural optimization, we investigate the electronic structure, phonon spectra, and superconductivity of BiS2-based layered compounds LaO1-xFxBiS2. For LaO0.5F0.5BiS2, the calculated electron-phonon coupling constant is equal to lambda = 0.8, and obtained Tc = 9.1 K is very close to its experimental value, indicating that it is a conventional electron-phonon superconductor

    Limits from Weak Gravity Conjecture on Dark Energy Models

    Full text link
    The weak gravity conjecture has been proposed as a criterion to distinguish the landscape from the swampland in string theory. As an application in cosmology of this conjecture, we use it to impose theoretical constraint on parameters of two types of dark energy models. Our analysis indicates that the Chaplygin-gas-type models realized in quintessence field are in the swampland, whereas the aa power-low decay model of the variable cosmological constant can be viable but the parameters are tightly constrained by the conjecture.Comment: Revtex4, 8 pages, 5 figures; References, minor corrections in content, and acknowledgement adde
    • …
    corecore