1,753 research outputs found

    Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interactions between dopamine and glutamate in the prefrontal cortex are essential for cognitive functions such as working memory. Modulation of N-methyl-D-aspartic acid (NMDA) receptor functions by dopamine D1 receptor is believed to play a critical role in these functions. The aim of the work reported here is to explore the signaling pathway underlying D1 receptor-mediated trafficking of NMDA receptors in cultured rat prefrontal cortical neurons.</p> <p>Results</p> <p>Activation of D1 receptor by selective agonist SKF-81297 significantly increased the expression of NR2B subunits. This effect was completely blocked by small interfering RNA knockdown of Fyn, but not Src. Under control conditions, neither Fyn nor Src knockdown exhibited significant effect on basal NR2B expression. D1 stimulation significantly enhanced NR2B insertion into plasma membrane in cultured PFC neurons, a process obstructed by Fyn, but not Src, knockdown.</p> <p>Conclusions</p> <p>Dopamine D1 receptor-mediated increase of NMDA receptors is thus Fyn kinase dependent. Targeting this signaling pathway may be useful in treating drug addiction and schizophrenia.</p

    Dynamic Mesh-Aware Radiance Fields

    Full text link
    Embedding polygonal mesh assets within photorealistic Neural Radience Fields (NeRF) volumes, such that they can be rendered and their dynamics simulated in a physically consistent manner with the NeRF, is under-explored from the system perspective of integrating NeRF into the traditional graphics pipeline. This paper designs a two-way coupling between mesh and NeRF during rendering and simulation. We first review the light transport equations for both mesh and NeRF, then distill them into an efficient algorithm for updating radiance and throughput along a cast ray with an arbitrary number of bounces. To resolve the discrepancy between the linear color space that the path tracer assumes and the sRGB color space that standard NeRF uses, we train NeRF with High Dynamic Range (HDR) images. We also present a strategy to estimate light sources and cast shadows on the NeRF. Finally, we consider how the hybrid surface-volumetric formulation can be efficiently integrated with a high-performance physics simulator that supports cloth, rigid and soft bodies. The full rendering and simulation system can be run on a GPU at interactive rates. We show that a hybrid system approach outperforms alternatives in visual realism for mesh insertion, because it allows realistic light transport from volumetric NeRF media onto surfaces, which affects the appearance of reflective/refractive surfaces and illumination of diffuse surfaces informed by the dynamic scene.Comment: ICCV 202

    Quantifying the contribution of 31 risk factors to the increasing prevalence of diabetes among US adults, 2005–2018

    Get PDF
    IntroductionNo study has comprehensively quantified the individual and collective contributions of various risk factors to the growing burden of diabetes in the United States.MethodsThis study aimed to determine the extent to which an increase in the prevalence of diabetes was related to concurrent changes in the distribution of diabetes-related risk factors among US adults (aged 20 years or above and not pregnant). Seven cycles of series of cross-sectional National Health and Nutrition Examination Survey data between 2005–2006 and 2017–2018 were included. The exposures were survey cycles and seven domains of risk factors, including genetic, demographic, social determinants of health, lifestyle, obesity, biological, and psychosocial domains. Using Poisson regressions, percent reduction in the β coefficient (the logarithm used to calculate the prevalence ratio for prevalence of diabetes in 2017–2018 vs. 2005–2006) was computed to assess the individual and collective contribution of the 31 prespecified risk factors and seven domains to the growing burden of diabetes.ResultsOf the 16,091 participants included, the unadjusted prevalence of diabetes increased from 12.2% in 2005–2006 to 17.1% in 2017–2018 [prevalence ratio: 1.40 (95% CI, 1.14–1.72)]. Individually, genetic domain [17.3% (95% CI, 5.4%−40.8%)], demographic domain [41.5% (95% CI, 24.4%−76.8%)], obesity domain [35.3% (95% CI, 15.8%−70.2%)], biological domain [46.2% (95% CI, 21.6%−79.1%)], and psychosocial domain [21.3% (95% CI, 9.5%−40.1%)] were significantly associated with a different percent reduction in β. After adjusting for all seven domains, the percent reduction in β was 97.3% (95% CI, 62.7%−164.8%).ConclusionThe concurrently changing risk factors accounted for the increasing diabetes prevalence. However, the contribution of each risk factor domain varied. Findings may inform planning cost-effective and targeted public health programs for diabetes prevention
    • …
    corecore