52 research outputs found

    Neural Degradation Representation Learning for All-In-One Image Restoration

    Full text link
    Existing methods have demonstrated effective performance on a single degradation type. In practical applications, however, the degradation is often unknown, and the mismatch between the model and the degradation will result in a severe performance drop. In this paper, we propose an all-in-one image restoration network that tackles multiple degradations. Due to the heterogeneous nature of different types of degradations, it is difficult to process multiple degradations in a single network. To this end, we propose to learn a neural degradation representation (NDR) that captures the underlying characteristics of various degradations. The learned NDR decomposes different types of degradations adaptively, similar to a neural dictionary that represents basic degradation components. Subsequently, we develop a degradation query module and a degradation injection module to effectively recognize and utilize the specific degradation based on NDR, enabling the all-in-one restoration ability for multiple degradations. Moreover, we propose a bidirectional optimization strategy to effectively drive NDR to learn the degradation representation by optimizing the degradation and restoration processes alternately. Comprehensive experiments on representative types of degradations (including noise, haze, rain, and downsampling) demonstrate the effectiveness and generalization capability of our method

    Clinical application and functional characterization of TOX in cutaneous T-cell lymphoma

    No full text
    Cutaneous T-cell lymphoma (CTCL) is a group of lymphoproliferative disorders consisting of two main subtypes: mycosis fungoides (MF) and SĂ©zary syndrome (SS). Due to the lack of robust histological markers, it remains a challenge to establish an accurate diagnosis and offer long term prognostication for CTCL. In addition, the molecular pathogenesis of CTCL is only partially understood. Previously our group discovered that early stage MF skin biopsies contained ectopic expression of TOX gene, which is essential for the early development of CD4âș T cells but normally is switched off in mature CD4âș T cells in the peripheral tissues. The objectives of my thesis research are to evaluate if TOX can be used to improve CTCL diagnosis and prognostication, and to characterize the functional role of TOX in the pathogenesis of CTCL. Using skin biopsies and clinical databases from Vancouver, Beijing and Boston, I confirmed that TOX expression levels were significantly upregulated in the full spectrum of MF and in SS. In addition, as a diagnostic marker, high TOX expression levels differentiated CTCL from non-CTCL controls with good sensitivity and specificity. Furthermore, as a prognostic marker, high TOX mRNA levels correlated with increased risks of disease progression and disease-specific mortality in MF, and increased risks of disease-specific mortality in SS. I also investigated the functional role of TOX in CTCL pathogenesis using multiple CTCL cell lines and a mouse xenograft model. TOX knockdown in three CTCL cell lines led to markedly increased apoptosis, reduced cell proliferation, and impaired tumorigenic ability. These effects were partially mediated by increased expression of two cell cycle regulators, CDKN1B and CDKN1C. In addition, transcriptome analysis between TOX-suppressed cells and control CTCL cells uncovered additional potential molecules downstream of TOX, such as tumor suppressors FOXO3 and HBP1. Our results provide strong evidence that aberrant activation of TOX can serve as a diagnostic and prognostic biomarker for CTCL. Further, we demonstrated that TOX plays a crucial oncogenic role in CTCL pathogenesis, partially through regulating transcription of CDKN1B, CDKN1C and other downstream genes. Therefore TOX and/or its downstream genes may be promising therapeutic targets for CTCL.Medicine, Faculty ofMedicine, Department ofExperimental Medicine, Division ofGraduat

    Portable organic gas detection sensor based on the effect of guided-mode resonance

    No full text
    A novel organic gas detection sensor based on the effect of guided-mode resonance is proposed in this paper. The sensor is designed to operate in the visible light band. It contains four main sections: a light source, a miniature gas chamber composed of a guided-mode resonant filter, a diffraction grating, and a CCD image sensor. When bunched visible light is irradiated vertically to the gas chamber, it passes through the gas chamber and diffraction grating, and is then received by the CCD sensor. The optical signal received by the CCD sensor is then reduced to the spectrum using a specific algorithm. When organic gases are injected into the gas chamber, there is a shift in the wavelength of resonant reflection, and the magnitude of this shift is proportional to the refractive index of the gas. The large variation in the refractive indexes of industrially important organic gases means that their characteristic peak wavelengths can be easily identified. As a result, this system can quickly detect organic gases. To verify the feasibility of this technique, we use finite difference time domain solutions to simulate the results. The sensitivity of this type of sensor can reach wavelength differences of 0.001 nm, which means that the sensor has high potential for application in portable, high-precision detection systems

    Highly Sensitive Graphene/Polydimethylsiloxane Composite Films near the Threshold Concentration with Biaxial Stretching

    No full text
    Uniformly dispersed graphene effectively improves the strain-sensing capability of the composite film under a low graphene load in nanocomposites prepared with polydimethylsiloxane (PDMS) and graphene (GNP) monolayer powder. The threshold concentration of graphene was determined by loading nanocomposites at different temperatures. For different concentrations, when using traditional uniaxial stretching, the rate of resistance change of films near the threshold concentration is five times higher than the rate of films with a high concentration. Compared with traditional uniaxial stretching, the biaxial stretching we introduced can effectively improve the sensitivity of the film by an order of magnitude. The change in the resistance of the film near the threshold concentration is due to the change of the tunnel length and the cross-section of the tunnel, whereas the high concentration of the film is due to the change of the conductive path inside the film. Biaxial stretching has different effects on films with different concentrations, but the final effect of increasing sensitivity is the same. This study provides guidance for improving the strain-sensing sensitivity of GNP/PDMS composite films and the application of biaxial tension in detecting human motions

    Fiber-optic temperature sensor based on temperature-dependent refractive index of Germanium-silica coating stack

    No full text
    We report on a novel fiber-optic temperature sensor based on the temperature-dependent refractive index of a germanium-silica (Ge-SiO2) coating stack. The relationship between the reflectivity and the temperature-dependent refractive index of the Ge-SiO2 coating stack at 1550 nm is theoretically investigated. A reflection-type fiber-optic probe with high sensitivity and wide response range is designed and fabricated by physical vapor deposition. Experimental results show that the reflectivity is linearly dependent on temperature in the range of -30 to 130 oC, and the sensor exhibits high sensitivity and structural stability in the range of 50 to 500 K.Published versio

    Flexible and Optical Fiber Sensors Composited by Graphene and PDMS for Motion Detection

    No full text
    A stretchable optical sensor can quantify the strain generated by human movement, which has been widely studied in the development of health monitoring systems, human–machine interfaces and wearable devices. This paper reports a graphene-added polydimethylsiloxane (PDMS) fiber, which has high tensile properties and good light transmittance suitable for detecting human movement. When the graphene-added PDMS fiber is stretched, the concentration of graphene per unit volume is constant, and the sensor uses the optical loss of the beam through the graphene PDMS fiber to detect the tensile strain. The fiber has excellent strain-sensing performance, outstanding sensitivity, a tensile property of 150%, and an excellent waterproofing performance. The linear response and repeated response in large dynamic range could reach 100% stability. The results show that the sensor can be used to detect human motion detection. These excellent properties indicate that the fiber has potential applications in wearable devices, soft robots and electronic skin

    Ring Wrinkle Patterns with Continuously Changing Wavelength Produced Using a Controlled-Gradient Light Field

    No full text
    We report a facile method to prepare gradient wrinkles using a controlled-gradient light field. Because of the gradient distance between the ultraviolet (UV) lamp and polydimethylsiloxane (PDMS) substrate during UV/ozone treatment, the irradiance reaching the substrate continuously changed, which was transferred into the resulting SiOx film with a varying thickness. Therefore, wrinkles with continuously changing wavelength were fabricated using this approach. It was found that the wrinkle wavelength decreased as the distance increased. We fabricated 1-D wrinkle patterns and ring wrinkles with a gradient wavelength. The ring wrinkles were prepared using radial stresses, which were achieved by pulling the center of a freely hanging PDMS film. The resulting wrinkles with changing wavelength can be used in fluid handling systems, biological templates, and optical devices

    Computer-Aided Discovery of Small Molecule Inhibitors of Thymocyte Selection-Associated High Mobility Group Box Protein (TOX) as Potential Therapeutics for Cutaneous T-Cell Lymphomas

    No full text
    Cutaneous T-cell lymphomas (CTCL) are the most common primary lymphomas of the skin. We have previously identified thymocyte selection-associated high mobility group (HMG) box protein (TOX) as a promising drug target in CTCL; however, there are currently no small molecules able to directly inhibit TOX. We aimed to address this unmet opportunity by developing anti-TOX therapeutics with the use of computer-aided drug discovery methods. The available NMR-resolved structure of the TOX protein was used to model its DNA-binding HMG-box domain. To investigate the druggability of the corresponding protein–DNA interface on TOX, we performed a pilot virtual screening of 200,000 small molecules using in silico docking and identified ‘hot spots’ for drug-binding on the HMG-box domain. We then performed a large-scale virtual screening of 7.6 million drug-like compounds that were available from the ZINC15 database. As a result, a total of 140 top candidate compounds were selected for subsequent in vitro validation. Of those, 18 small molecules have been characterized as selective TOX inhibitors.Medicine, Faculty ofOther UBCDermatology and Skin Science, Department ofUrologic Sciences, Department ofReviewedFacult

    Composite Films of Polydimethylsiloxane and Micro-Graphite with Tunable Optical Transmittance

    No full text
    In this paper we introduce a polydimethylsiloxane (PDMS) composite fabricated using a simple production process and demonstrate the optical transmittance properties of this composite in the 300–1000 nm wavelength region. We control the material’s transmittance by varying the microcrystalline graphite powder concentration or the composite film’s thickness. In addition, we tailor the specimens into various trapezoidal shapes and load these specimens by mechanically stretching them in the direction perpendicular to both their base lines and their top lines. The advantage of this method is that a wide range of transmittance properties can be obtained for a given specimen. Furthermore, samples with different trapezoidal shapes have different transmittance tuning capabilities
    • 

    corecore