54 research outputs found

    Microstructure,mechanical property and oxidation behavior of HfZrTiTaBx HEAs

    Get PDF
    The unique structural and thermal features of high-entropy alloys (HEAs) conduce to their excellent stability and mechanical properties. Recent researches have suggested that the high-entropy alloys composed of refractory metals exhibit competitive phase-stability and strength at elevated temperatures, which made them the promising candidate materials for high-temperature structural applications at even higher temperatures compared with the Ni-based superalloys. However, the alloys barely consisting of refractory metal elements are usually oxidized easily in oxidizing environment at high temperatures. This work aims to prepare a refractory HEA with both excellent mechanical properties and outstanding oxidation resistance by alloying of B element. In this study, an equimolar quaternary HfZrTiTa alloy and three kinds of HfZrTiTaBx(x=1.1, 2.3, 4.7) alloys with different amounts of B-addition were produced by vacuum arc melting technique in argon atmosphere. The structures of the prepared alloys were characterized via X-Ray diffraction and TEM. The oxidation behaviors of these alloys were investigated by differential scanning calorimeter (DSC)from 25℃ to 1300℃ in air. Their mechanical properties at room temperature and phase-stability at different annealing temperatures from 800℃ to 1600℃ were also examined. The results show that the HfZrTiTa alloy consists of a fully disordered body-centered cubic (BCC) solid solution phase due to the high mixing entropy, while the alloys with B addition have some nano particles uniformly distributed in the BCC solid solution matrix. The lattice parameters and Vicker hardness of the B-containing alloys increase with increasing B content due to the interstitial solid solution strengthening of B element and nanoprecipitation strengthening. The BCC structure of all alloy samples remains stable up to 1200℃. The quaternary HfZrTiTa alloy has a flexural strength of 2.3GPa with a typical dimple fracture morphology, indicating that the alloy shows ductile to some extent. The oxidation rates of the HfZrTiTaBx (x=1.1, 2.3, 4.7) alloys at 1300℃ were about 0.13~0.15g•mm-2•h-1, obviously lower than that of the HfZrTiTa alloy (0.454g•mm-2•h-1)

    Spatial-temporal evolution and driving factors of green high-quality agriculture development in China

    Get PDF
    The fundamental means of addressing the challenges concerning China’s agricultural resources and environment is to achieve green and high-quality development within the agricultural sector. In this study, we measured the level of green high-quality agricultural development (GHQAD) in China from 2003 to 2020, and used Theil index, Moran’s I and Geographic detector to reveal the evolution trend and driving factors of GHQAD in China. The results show that the development level of GHQAD in China is constantly improving while the spatial difference is decreasing, and the primary contributor to this overall variation is the intra-regional variation. The spatial distribution of GHQAD in China was positively correlated, with high concentration in eastern and central regions, and low concentration in western regions. Notably, topographic relief degree and urbanization level are the key driving factors contributing to the spatial differences in GHQAD across China. The insights gained from this study will be particularly valuable for the government decision-making processes, thereby elevating GHQAD development in China and ultimately achieving coordinated development within the agricultural sector

    Design criteria and applications of multi-channel parallel microfluidic module

    Get PDF
    The microfluidic technology for function microsphere synthesis has high control precision. However, the throughput is too low for industrial scale-up applications. Current scale-up design focuses on a multi-channel in 2D, in which the distribution uniformity parameter δ increases linearly, resulting in the deterioration of the flow distribution performance. The 3D modular scale-up strategy could greatly alleviate this problem, but no design principles have been developed yet. For the first time, this paper establishes the microfluidic 3D scale-up design criteria. Based on the modular design concept, the design method of 2D and 3D throughput scale-up parameters N and M, distribution uniformity parameters δ and β, and microchannel design parameter KRwere proposed. The equivalent resistance coefficient was defined, and the influence of different parameters on a 2D array and 3D stack was analyzed. Furthermore, the error correction method was studied. It was found that the two-stage scale-up process contradicted each other. A good scale-up performance of one stage led to the limitation of another stage. Increasing the resistance of each channel Rucould both increase the two-stage scale-up performance, which was an important factor. A single-module scale-up system with 8 channels in a single array and 10 arrays in a vertical stack, which had 80 channels in total, was designed and fabricated based on the proposed design criteria for generating Chitosan/TiO2composite microspheres. The average particle size was 539.65 μm and CV value was about 3.59%. The throughput was 480 ml h-1, which effectively increased the throughput scale and the product quality

    Renormalization of the Hartree-Fock-Bogoliubov Equations in the Case of a Zero Range Pairing Interaction

    Get PDF
    We introduce a natural and simple to implement renormalization scheme of the Hartree-Fock-Bogoliubov (HFB) equations for the case of zero range pairing interaction. This renormalization scheme proves to be equivalent to a simple energy cut-off with a position dependent running coupling constant.Comment: 4 pages, 1 figure. The text has changed somewhat, replaced the figure with a different one, however initial assumptions and conclusions remained unchange

    Chloroform Extract of Artemisia annua

    Get PDF
    Artemisia annua L. belongs to the Asteraceae family, which is indigenous to China. It has valuable pharmacological properties, such as antimalarial, anti-inflammatory, and anticancer properties. However, whether it possesses antiasthma properties is unknown. In the current study, chloroform extract of Artemisia annua L. (CEAA) was prepared, and we found that CEAA completely eliminated acetylcholine (ACh) or high K+-elicited (80 mM) contractions of mouse tracheal rings (TRs). Patch-clamp technique and ion channel blockers were employed to explore the underlying mechanisms of the relaxant effect of CEAA. In whole-cell current recording, CEAA almost fully abolished voltage-dependent Ca2+ channel (VDCC) currents and markedly enhanced large conductance Ca2+-activated K+ (BK) channel currents on airway smooth muscle cells (ASMCs). In single channel current recording, CEAA increased the opening probability but had no effect on the single channel conductance of BK channels. However, under paxilline-preincubated (a selective BK channel blocker) conditions, CEAA only slightly increased BK channel currents. These results indicate that CEAA may contain active components with potent antiasthma activity. The abolished VDCCs by CEAA may mainly contribute to the underlying mechanism through which it acts as an effective antiasthmatic compound, but the enhanced BK currents might play a less important role in the antiasthmatic effects

    Association between platelet distribution width and serum uric acid in Chinese population

    Get PDF
    © 2019 International Union of Biochemistry and Molecular Biology Platelet distribution width (PDW) is a simple and inexpensive parameter, which could predict activation of coagulation efficiently. And it has been confirmed to have a significant role in many diseases. We aimed to explore the association between PDW and hyperuricemia in a large Chinese cohort. This cross-sectional study recruited 61,091 ostensible healthy participants (29,259 males and 31,832 females) after implementing exclusion criteria. Clinical data of the enrolled population included anthropometric measurements and serum parameters. Database was sorted by gender, and the association between PDW and hyperuricemia was analyzed after dividing PDW into quartiles. Crude and adjusted odds ratios of PDW for hyperuricemia with 95% confidence intervals were analyzed using binary logistic regression models. We found no significant difference in PDW values between the genders. Males showed significantly higher incidence of hyperuricemia than females. From binary logistic regression models, significant hyperuricemia risks only were demonstrated in PDW quartiles 2 and 3 in males (P < 0.05). This study displayed close association between PDW and hyperuricemia as a risk factor. It is meaningful to use PDW as a clinical risk predictor for hyperuricemia in males. © 2019 BioFactors, 45(3):326–334, 2019

    Analysis of fine grained sand and shale sedimentary characteristics in estuary based on sediment dynamics

    Get PDF
    Due to the dual effects of fluvial and tides, the tidal sand bars in estuaries have complex sedimentary characteristics and complex internal structures, making them difficult to predict and describe. In this paper, the sedimentary dynamics numerical simulation method is used to establish a tidal-controlled estuary model. The effects of tidal range and sediment grain size on tidal sand bars are simulated. The length, width, and thickness of tidal sand bars, as well as the length and thickness of the internal shale layer, are also analyzed. The results show that in the environment of a tide-controlled estuary, the tidal range has a more significant effect on tidal sand bars compared to the sediment grain size under the specific conditions used in this study. The main effect of tidal range on tidal sand bars is that the greater the tidal range, the greater the length-to-width ratio of the sandbank, and the higher the degree of sandbank development. In a tidal-controlled estuary environment, the formation and distribution of shale layer structures are also affected by tides: the length of the shale layer increases as the tidal energy increases, but the changes in the thickness are not obvious. Numerical simulations of the development and distribution of the tidal sand bars and shale layers in estuaries based on sedimentary dynamics will provide a basis for the sedimentary evolution of tide-controlled estuaries and will provide guidance for the exploration and development of tidal estuaries

    Evolution Application of Two-Dimensional MoS2-Based Field-Effect Transistors

    No full text
    High-performance and low-power field-effect transistors (FETs) are the basis of integrated circuit fields, which undoubtedly require researchers to find better film channel layer materials and improve device structure technology. MoS2 has recently shown a special two-dimensional (2D) structure and superior photoelectric performance, and it has shown new potential for next-generation electronics. However, the natural atomic layer thickness and large specific surface area of MoS2 make the contact interface and dielectric interface have a great influence on the performance of MoS2 FET. Thus, we focus on its main performance improvement strategies, including optimizing the contact behavior, regulating the conductive channel, and rationalizing the dielectric layer. On this basis, we summarize the applications of 2D MoS2 FETs in key and emerging fields, specifically involving logic, RF circuits, optoelectronic devices, biosensors, piezoelectric devices, and synaptic transistors. As a whole, we discuss the state-of-the-art, key merits, and limitations of each of these 2D MoS2-based FET systems, and prospects in the future

    Improved Continuous Wavelet Transform for Modal Parameter Identification of Long-Span Bridges

    No full text
    Accurate and timely identification of modal parameters of long-span bridges is important for bridge health monitoring and wind tunnel tests. Wavelet analysis is one of the most advantageous methods for identification because of its good localization characteristics in both time and frequency domain. In recent years, the wavelet method has been applied more frequently in parameter identification of linear and nonlinear systems. In this article, based on wavelet ridges and wavelet skeleton, the improved modal parameter identification method was studied. To find the appropriate time-frequency resolution, an optimal wavelet basis design principle based on minimum Shannon entropy was proposed. Aiming at endpoint effect in wavelet transform, a prediction continuation method based on support vector machine (SVM) was proposed, which can effectively suppress the endpoint effect of the extended samples. In view of the fact that the ridges of metric matrices obtained by the traditional crazy climber algorithm cannot fully reflect the distribution of ridges of modulus value matrices of wavelet coefficients, an improved high-precision crazy climber algorithm was put forward to accurately identify the position of the ridge of wavelet coefficients. Finally, taking a long-span cable-stayed bridge and a long-span suspension bridge as the engineering background, improved continuous wavelet transform (CWT) was applied to modal parameter identification of bridge under ambient excitation. The modal parameters such as modal frequency, damping ratio, and mode shape were obtained. Compared with the calculation value of the numerical simulation of long-span cable-stayed bridge and wind tunnel test of long-span suspension bridge, the reliability of CWT for modal parameter identification of long-span bridges under ambient excitation was verified

    Aerodynamics of High-Sided Vehicles on Truss Girder Considering Sheltering Effect by Wind Tunnel Tests

    No full text
    Aerodynamic characteristics of vehicles are directly related to their running safety, especially for the high-sided vehicles. In order to study the aerodynamic characteristics under multiple sheltering conditions, a complex large scale (1:20.4) truss model and three high-sided vehicles including articulated lorry, travelling bus and commercial van models with the same scale were built. The aerodynamic coefficients under various sheltering effects of wind barriers with different heights and porosities, bridge tower and the vehicle on the adjacent lane were measured. According to the results, wind barriers can effectively reduce wind speed behind them, thus decreasing the wind load acting on the vehicle, which causes the decrease of the aerodynamic response of all three vehicles. However, the influence at the leeward side is limited due to installation of central stabilizers. When the vehicle passes through the bridge tower, a sudden change occurs, the aerodynamic coefficients decrease and fluctuate in varying degrees, especially for the commercial van. When the vehicle moves in different lanes behind the bridge tower, the sheltering effect of the tower on the aerodynamic coefficient in Lane 1 is much greater than that in Lane 2. With regard to the interference between two vehicles on the adjacent lanes, the relative windward area between the test vehicle and the interference vehicle greatly affects the aerodynamics of the test vehicle
    • …
    corecore