1,454 research outputs found

    Bond relaxation, electronic and magnetic behavior of 2D metals structures Y on Li(110) surface

    Full text link
    We investigated the bond, electronic and magnetic behavior of adsorption Yttrium atoms on Lithium (110) surface using a combination of Bond-order-length-strength(BOLS) correlation and density-functional theory(DFT). We found that adsorption Y atoms on Li(110) surfaces form two-dimensional (2D) geometric structures of hexagon, nonagon, solid hexagonal, quadrangle and triangle. The consistent with the magnetic moment are 6.66{\mu}B, 5.54{\mu}B, 0.28{\mu}B, 1.04{\mu}B, 2.81{\mu}B, respectively. In addition, this work could pave the way for design new 2D metals electronic and magnetic properties

    Electronic structure and bond relaxation at Na/Ta(110) interfaces and 1D-chain and 2D-ring Ta metal structures on Na(110)

    Full text link
    We investigated the mechanism of Na/Ta(110) and Ta/Na(110) interfaces using a combination of bond band barrier (BBB) and zone selective electron spectroscopy (ZES) correlation. We found that 7/9 ML and 8/9 ML Ta metal on a Na(110) surface form one dimensional (1D) chain and two dimensional (2D) ring structures, respectively. Moreover, we show that on Na(110), the Ta-induced Na(110) surface binding energy (BE) shifts are dominated by quantum entrapment. On the contrary, on a Ta(110) surface, the Na-induced Ta(110) surface BE shifts are dominated by polarization. Thus, the BBB and ZES strategy could potentially be used for designing 1D and 2D metals with desired structures and properties

    Group Signatures and Accountable Ring Signatures from Isogeny-based Assumptions

    Get PDF
    Group signatures are an important cryptographic primitive providing both anonymity and accountability to signatures. Accountable ring signatures combine features from both ring signatures and group signatures, and can be directly transformed to group signatures. While there exists extensive work on constructing group signatures from various post-quantum assumptions, there has not been any using isogeny-based assumptions. In this work, we propose the first construction of isogeny-based group signatures, which is a direct result of our isogeny-based accountable ring signature. This is also the first construction of accountable ring signatures based on post-quantum assumptions. Our schemes are based on the decisional CSIDH assumption (D-CSIDH) and are proven secure under the random oracle model (ROM)

    Treatment-emergent neuroendocrine prostate cancer: A clinicopathological and immunohistochemical analysis of 94 cases

    Get PDF
    Purpose: This study aimed to evaluate the pathological characteristics, immunophenotype, and prognosis of treatment-emergent neuroendocrine prostate cancer (T-NEPC). Materials and Methods: We collected 231 repeated biopsy specimens of castration-resistant prostate cancer (CRPC) cases between 2008 and 2019. We used histopathological and immunohistochemical evaluations of Synaptophysin (SYN), ChromograninA (CgA), CD56, androgen receptor (AR), and prostate Results: Among the 231 CRPC cases, 94 (40.7%) cases were T-NEPC. T-NEPC were more likely to present with negative immunohistochemistry for AR (30.9%) and PSA (47.9%) than that of CRPC (8.8% and 17.5%, respectively). Kaplan-Meier analysis revealed that patients with T-NEPC (median overall survival [OS]: 17.6 months, 95% CI: 15.3-19.9 months) had significantly worse survival compared with usual CRPC patients (median OS: 23.6 months, 95% CI: 21.3-25.9 months, log-rank Conclusion: T-NEPC was associated with an unfavorable prognosis, negative immunohistochemistry for PSA in T-NEPC and serum PSA level ≤ 4 ng/ml had a worse prognosis. Urologists and pathologists should recognize the importance of the second biopsy in CRPC to avoid unnecessary diagnosis and treatment delays

    Advances in Fiber-Optic Extrinsic Fabry-Perot Interferometric Physical and Mechanical Sensors: A Review

    Get PDF
    Fabry-Perot Interferometers Have Found a Multitude of Scientific and Industrial Applications Ranging from Gravitational Wave Detection, High-Resolution Spectroscopy, and Optical Filters to Quantum Optomechanics. Integrated with Optical Fiber Waveguide Technology, the Fiber-Optic Fabry-Perot Interferometers Have Emerged as a Unique Candidate for High-Sensitivity Sensing and Have Undergone Tremendous Growth and Advancement in the Past Two Decades with their Successful Applications in an Expansive Range of Fields. the Extrinsic Cavity-Based Devices, I.e., the Fiber-Optic Extrinsic Fabry-Perot Interferometers (EFPIs), Enable Great Flexibility in the Design of the Sensitive Fabry-Perot Cavity Combined with State-Of-The-Art Micromachining and Conventional Mechanical Fabrication, Leading to the Development of a Diverse Array of EFPI Sensors Targeting at Different Physical Quantities. Here, We Summarize the Recent Progress of Fiber-Optic EFPI Sensors, Providing an overview of Different Physical and Mechanical Sensors based on the Fabry-Perot Interferometer Principle, with a Special Focus on Displacement-Related Quantities, Such as Strain, Force, Tilt, Vibration and Acceleration, Pressure, and Acoustic. the Working Principle and Signal Demodulation Methods Are Shown in Brief. Perspectives on Further Advancement of EFPI Sensing Technologies Are Also Discussed

    Topological Bonding and Electronic properties of Cd43_{43}Te28_{28} semiconductor material with microporous structure

    Full text link
    CdTe is II-VI semiconductor material with excellent characteristics and has demonstrated promising potential for application in the photovoltaic field. The electronic properties of Cd43Te28 with microporous structures have been investigated based on density functional theory. The newly established binding-energy and bond-charge model have been used to convert the value of Hamiltonian into bonding values. We provide a method for describing topological chemical bonds by atomic coordinates and wave phases. We also discuss the dynamic process of the wave function with time and the magic cube matrix. This study provides an innovative method and technology for the accurate analysis of the topological bonding and electronic properties of microporous semiconductor materials
    corecore