53 research outputs found

    Segment blockchain: a size reduced storage mechanism for blockchain

    Get PDF
    The exponential growth of the blockchain size has become a major contributing factor that hinders the decentralisation of blockchain and its potential implementations in data-heavy applications. In this paper, we propose segment blockchain, an approach that segmentises blockchain and enables nodes to only store a copy of one blockchain segment. We use PoW as a membership threshold to limit the number of nodes taken by an Adversary—the Adversary can only gain at most n/2 of nodes in a network of n nodes when it has 50% of the calculation power in the system (the Nakamoto blockchain security threshold). A segment blockchain system fails when an Adversary stores all copies of a segment, because the Adversary can then leave the system, causing a permanent loss of the segment. We theoretically prove that segment blockchain can sustain a (AD/n)m(AD/n)^m failure probability when the Adversary has no more than AD number of nodes and every segment is stored by m number of nodes. The storage requirement is mostly shrunken compared to the traditional design and therefore making the blockchain more suitable for data-heavy applications

    MWPoW: Multiple Winners Proof of Work Protocol, a decentralisation strengthened fast-confirm blockchain protocol

    Get PDF
    Blockchain mining should not be a game among power oligarchs. In this paper, we present the Multiple Winners Proof of Work Protocol (MWPoW), a mining-pool-like decentralised blockchain consensus protocol. MWPoW enables disadvantaged nodes which post only a small amount of calculation resource in the mining game to create blocks together and compete with power oligarchs without centralised representatives. A precise Support Rate of blocks can be determined through the mining process; the mechanism of the mainchain determination is therefore changed and has become faster and more straightforward. A method that periodically adjusts the block size and the block interval is introduced into MWPoW, which increases the system flexibility in the changes of network conditions and data flow. Experiments suggest, without lifting calculation and bandwidth requirements, MWPoW is more attractive to disadvantaged nodes due to its mostly increased reward expectation for disadvantaged nodes. The transaction pending time is shortened chiefly, and either the block interval or the block size can be adapted amid the changes of overall network conditions

    Contract-connection:An efficient communication protocol for Distributed Ledger Technology

    Full text link
    Distributed Ledger Technology (DLT) is promising to become the foundation of many decentralised systems. However, the unbalanced and unregulated network layout contributes to the inefficiency of DLT especially in the Internet of Things (IoT) environments, where nodes connect to only a limited number of peers. The data communication speed globally is unbalanced and does not live up to the constraints of efficient real-time distributed systems. In this paper, we introduce a new communication protocol, which enables nodes to calculate the tradeoff between connecting/disconnecting a peer in a completely decentralised manner. The network layout globally is continuously re-balancing and optimising along with nodes adjusting their peers. This communication protocol weakened the inequality of the communication network. The experiment suggests this communication protocol is stable and efficient

    Anchoring the value of cryptocurrency

    Get PDF
    A decade long thrive of cryptocurrency has shown its potential as a source of alternative-finance and the security and the robustness of the underpinning blockchain technology. However, most cryptocurrencies fail to show inimitability and their meanings in the real world. As a result, they usually start off as favourites but quickly become the outcasts of the digital asset market. The blockchain society attempts to anchor the value of cryptocurrency with real values by employing smart contracts and link it with computation resources and the digital-productivity that have value and demands in the real world. But their attempts have some undesirable effects due to a limited number of practical applications. This limitation is caused by the dilemma between high performance and decentralisation (universal joinability). The emerging of blockchain sharding models, however, has offered a possible solution to address this dilemma. In this paper, we explore a financial model for blockchain sharding that will build an active link between the value of cryptocurrency and computation resources as well as the market and labour behaviours. Our model can adjust the price of resources and the compensation for maintaining a system based on those behaviours. We anchor the value of cryptocurrency by the amount of computation resources participated in and give the cryptocurrency a meaning as the exchange between computation resources globally. Finally, we present a working example which, through financial regularities, regulates the behaviour of anonymous participants, also incents/discourages participation dynamically

    A flexible n/2 adversary node resistant and halting recoverable blockchain sharding protocol

    Get PDF
    Blockchain sharding is a promising approach to solving the dilemma between decentralisation and high performance (transaction throughput) for blockchain. The main challenge of Blockchain sharding systems is how to reach a decision on a statement among a sub-group (shard) of people while ensuring the whole population recognises this statement. Namely, the challenge is to prevent an adversary who does not have the majority of nodes globally but have the majority of nodes inside a shard. Most Blockchain sharding approaches can only reach a correct consensus inside a shard with at most n/3n/3 evil nodes in a nn node system. There is a blockchain sharding approach which can prevent an incorrect decision to be reached when the adversary does not have n/2n/2 nodes globally. However, the system can be stopped from reaching consensus (become deadlocked) if the adversary controls a smaller number of nodes. In this paper, we present an improved Blockchain sharding approach that can withstand n/2n/2 adversarial nodes and recover from deadlocks. The recovery is made by dynamically adjusting the number of shards and the shard size. A performance analysis suggests our approach has a high performance (transaction throughput) while requiring little bandwidth for synchronisation
    • …
    corecore