44 research outputs found

    Microwave-Assisted Synthesis of Co/CoOx Supported on Earth-Abundant Coal-Derived Carbon for Electrocatalysis of Oxygen Evolution

    Get PDF
    The evident demand for hydrogen as the ultimate energy fuel for posterity calls for the development of low-cost, efficient and stable electrocatalysts for water splitting. Herein, we report the synthesis of Co/CoOx supported on coal-derived N-doped carbon via a simple microwave-assisted method and demonstrate its application as an efficient catalyst for the oxygen evolution reaction (OER). With the optimal amount of cobalt introduced into the N-doped coal-derived, the developed catalyst achieved overpotentials of 0.370 and 0.429 V during water oxidation at current densities of 1 mA cm(-2) and 10 mA cm(-2), respectively. There was no noticeable loss in the activity of the catalyst during continuous galvanostatic polarization at a current density of 10 mA cm(-2) for a test period of 66 h. The synergistic interaction of the Co/CoOx moieties with the pyridinic and pyrollic nitrogen functional groups in the N-doped carbon, as well with the other heteroatoms species in the pristine coal favored enhancement of the OER electrocatalytic performance. (C) The Author(s) 2019. Published by ECS

    Theoretical and Experimental Studies of Schottky Diodes That Use Aligned Arrays of Single Walled Carbon Nanotubes

    Get PDF
    We present theoretical and experimental studies of Schottky diodes that use aligned arrays of single walled carbon nanotubes. A simple physical model, taking into account the basic physics of current rectification, can adequately describe the single-tube and array devices. We show that for as grown array diodes, the rectification ratio, defined by the maximum-to-minimum-current-ratio, is low due to the presence of m-SWNT shunts. These tubes can be eliminated in a single voltage sweep resulting in a high rectification array device. Further analysis also shows that the channel resistance, and not the intrinsic nanotube diode properties, limits the rectification in devices with channel length up to ten micrometer.Comment: Nano Research, 2010, accepte

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne⋅\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×10−37cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×10−71.6 \times 10^{-7}

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    Enhanced weathering during glacial periods and its dynamic response to climate and sea-level changes inferred from the northern South China Sea sediments

    No full text
    Secondary weathering of exposed continental shelf sediment at low-latitudes may play a significant role in atmospheric CO2 consumption during glacial periods, which is negative feedback for climate stability. However, more lines of evidences are required to verify the link of glacial weathering with climate. This study presents a comprehensive analysis of geochemical proxies that indicate the silicate weathering intensity in the northern South China Sea (SCS) over orbital timescales since ∼244 ka. Provenance discrimination results, based on the Sr-Nd isotopes values and the patterns of rare earth elements (REEs), suggest that the terrigenous sediment was primarily derived from Taiwan Island. The silicate weathering records revealed two different weathering regimes during glacial periods in the northern SCS, corresponding to changes in monsoon climate and sea-level. During the early period of Marine Isotope Stage 6 (MIS 6), the increase in weathering intensity was in response to climate variability, and the rapid delivery of terrigenous sediment through contour currents allowed for the preservation of climate signals in the continental margin. In contrast, the significant increase in weathering intensity during the glacial periods at late MIS 2 and late MIS 6, was a result of the sedimentary recycling process dominated by sea-level rises. In this case, the marginal sea weathering records did not truly reflect climate changes, due to secondary weathering processes on the exposed continental shelf. Our new geochemical results emphasize the dynamic coupling effects of climate and sea-level changes in transmitting and preserving silicate weathering signals at low-latitude during glacial periods. When using marginal sea sediments for paleoclimatic and paleo-weathering reconstruction, one should be cautious of the complex influence of sediment source-to-sink processes on sediment composition, and a holistic approach may provide more robust constraints
    corecore