2,337 research outputs found

    The longitudinal and transverse distributions of the pion wavefunction from the present experimental data on the pion-photon transition form factor

    Get PDF
    It is noted that the low-energy behavior of the pion-photon transition form factor Fπγ(Q2)F_{\pi\gamma}(Q^2) is sensitive to the transverse distribution of the pion wavefunction, and its high-energy behavior is sensitive to the longitudinal one. Thus a careful study on Fπγ(Q2)F_{\pi\gamma}(Q^2) can provide helpful information on the pion wavefunction precisely. In this paper, we present a combined analysis of the data on Fπγ(Q2)F_{\pi\gamma}(Q^2) reported by the CELLO, the CLEO, the BABAR and the BELLE collaborations. It is performed by using the method of least squares. By using the combined measurements of BELLE and CLEO Collaborations, the pion wavefunction longitudinal and transverse behavior can be fixed to a certain degree, i.e. we obtain β∈[0.691,0.757]GeV\beta \in [0.691,0.757] \rm GeV and B∈[0.00,0.235]B \in [0.00,0.235] for Pχ2≥90%P_{\chi^2} \geq 90\%, where β\beta and BB are two parameters of a convenient pion wavefunction model whose distribution amplitude can mimic the various longitudinal behavior under proper choice of parameters. We observe that the CELLO, CLEO and BELLE data are consistent with each other, all of which prefers the asymptotic-like distribution amplitude; while the BABAR data prefers a more broad distribution amplitude, such as the CZ-like one.Comment: 7 pages, 10 figure

    Pion Electromagnetic Form Factor in the KTK_T Factorization Formulae

    Full text link
    Based on the light-cone (LC) framework and the kTk_T factorization formalism, the transverse momentum effects and the different helicity components' contributions to the pion form factor Fπ(Q2)F_{\pi}(Q^2) are recalculated. In particular, the contribution to the pion form factor from the higher helicity components (λ1+λ2=±1\lambda_1+\lambda_2=\pm 1), which come from the spin-space Wigner rotation, are analyzed in the soft and hard energy regions respectively. Our results show that the right power behavior of the hard contribution from the higher helicity components can only be obtained by fully keeping the kTk_T dependence in the hard amplitude, and that the kTk_T dependence in LC wavefunction affects the hard and soft contributions substantially. A model for the twist-3 wavefunction ψp(x,k⊥)\psi_p(x,\mathbf{k_\perp}) of the pion has been constructed based on the moment calculation by applying the QCD sum rules, whose distribution amplitude has a better end-point behavior than that of the asymptotic one. With this model wavefunction, the twist-3 contributions including both the usual helicity components (λ1+λ2=0\lambda_1+\lambda_2=0) and the higher helicity components (λ1+λ2=±1\lambda_1+\lambda_2=\pm 1) to the pion form factor have been studied within the modified pQCD approach. Our results show that the twist-3 contribution drops fast and it becomes less than the twist-2 contribution at Q2∼10GeV2Q^2\sim 10GeV^2. The higher helicity components in the twist-3 wavefunction will give an extra suppression to the pion form factor. When all the power contributions, which include higher order in αs\alpha_s, higher helicities, higher twists in DA and etc., have been taken into account, it is expected that the hard contributions will fit the present experimental data well at the energy region where pQCD is applicable.Comment: 4 pages, 2 figures, Prepared for International Conference on QCD and Hadronic Physics, Beijing, China, 16-20 June 200

    Heavy Pseudoscalar Twist-3 Distribution Amplitudes within QCD Theory in Background Fields

    Full text link
    In this paper, we study the properties of the twist-3 distribution amplitude (DA) of the heavy pseudo-scalars such as ηc\eta_c, BcB_c and ηb\eta_b. New sum rules for the twist-3 DA moments \left_{\rm HP} and \left_{\rm HP} up to sixth orders and up to dimension-six condensates are deduced under the framework of the background field theory. Based on the sum rules for the twist-3 DA moments, we construct a new model for the two twist-3 DAs of the heavy pseudo-scalar with the help of the Brodsky-Huang-Lepage prescription. Furthermore, we apply them to the Bc→ηcB_c\to\eta_c transition form factor (f+Bc→ηc(q2)f^{B_c\to\eta_c}_+(q^2)) within the light-cone sum rules approach, and the results are comparable with other approaches. It has been found that the twist-3 DAs ϕ3;ηcP\phi^P_{3;\eta_c} and ϕ3;ηcσ\phi^\sigma_{3;\eta_c} are important for a reliable prediction of f+Bc→ηc(q2)f^{B_c\to\eta_c}_+(q^2). For example, at the maximum recoil region, we have f+Bc→ηc(0)=0.674±0.066f^{B_c\to\eta_c}_+(0) = 0.674 \pm 0.066, in which those two twist-3 terms provide ∼33%\sim33\% and ∼22%\sim22\% contributions. Also we calculate the branching ratio of the semi-leptonic decay Bc→ηclνB_c \to\eta_c l\nu as Br(Bc→ηclν)=(9.31−2.01+2.27)×10−3Br(B_c \to\eta_c l\nu) = \left( 9.31^{+2.27}_{-2.01} \right) \times 10^{-3}.Comment: 12 pages, 16 figure
    • …
    corecore