1,080 research outputs found

    Generic Secure Repair for Distributed Storage

    Get PDF
    This paper studies the problem of repairing secret sharing schemes, i.e., schemes that encode a message into nn shares, assigned to nn nodes, so that any nβˆ’rn-r nodes can decode the message but any colluding zz nodes cannot infer any information about the message. In the event of node failures so that shares held by the failed nodes are lost, the system needs to be repaired by reconstructing and reassigning the lost shares to the failed (or replacement) nodes. This can be achieved trivially by a trustworthy third-party that receives the shares of the available nodes, recompute and reassign the lost shares. The interesting question, studied in the paper, is how to repair without a trustworthy third-party. The main issue that arises is repair security: how to maintain the requirement that any colluding zz nodes, including the failed nodes, cannot learn any information about the message, during and after the repair process? We solve this secure repair problem from the perspective of secure multi-party computation. Specifically, we design generic repair schemes that can securely repair any (scalar or vector) linear secret sharing schemes. We prove a lower bound on the repair bandwidth of secure repair schemes and show that the proposed secure repair schemes achieve the optimal repair bandwidth up to a small constant factor when nn dominates zz, or when the secret sharing scheme being repaired has optimal rate. We adopt a formal information-theoretic approach in our analysis and bounds. A main idea in our schemes is to allow a more flexible repair model than the straightforward one-round repair model implicitly assumed by existing secure regenerating codes. Particularly, the proposed secure repair schemes are simple and efficient two-round protocols

    Approximations of Shannon Mutual Information for Discrete Variables with Applications to Neural Population Coding

    Full text link
    Although Shannon mutual information has been widely used, its effective calculation is often difficult for many practical problems, including those in neural population coding. Asymptotic formulas based on Fisher information sometimes provide accurate approximations to the mutual information but this approach is restricted to continuous variables because the calculation of Fisher information requires derivatives with respect to the encoded variables. In this paper, we consider information-theoretic bounds and approximations of the mutual information based on Kullback--Leibler divergence and R\'{e}nyi divergence. We propose several information metrics to approximate Shannon mutual information in the context of neural population coding. While our asymptotic formulas all work for discrete variables, one of them has consistent performance and high accuracy regardless of whether the encoded variables are discrete or continuous. We performed numerical simulations and confirmed that our approximation formulas were highly accurate for approximating the mutual information between the stimuli and the responses of a large neural population. These approximation formulas may potentially bring convenience to the applications of information theory to many practical and theoretical problems.Comment: 31 pages, 6 figure

    Connecting Multiple-unicast and Network Error Correction: Reduction and Unachievability

    Full text link
    We show that solving a multiple-unicast network coding problem can be reduced to solving a single-unicast network error correction problem, where an adversary may jam at most a single edge in the network. Specifically, we present an efficient reduction that maps a multiple-unicast network coding instance to a network error correction instance while preserving feasibility. The reduction holds for both the zero probability of error model and the vanishing probability of error model. Previous reductions are restricted to the zero-error case. As an application of the reduction, we present a constructive example showing that the single-unicast network error correction capacity may not be achievable, a result of separate interest.Comment: ISIT 2015. arXiv admin note: text overlap with arXiv:1410.190

    Global Entropy Solutions to the Gas Flow in General Nozzle

    Full text link
    We are concerned with the global existence of entropy solutions for the compressible Euler equations describing the gas flow in a nozzle with general cross-sectional area, for both isentropic and isothermal fluids. New viscosities are delicately designed to obtain the uniform bound of approximate solutions. The vanishing viscosity method and compensated compactness framework are used to prove the convergence of approximate solutions. Moreover, the entropy solutions for both cases are uniformly bounded independent of time. No smallness condition is assumed on initial data. The techniques developed here can be applied to compressible Euler equations with general source terms

    Mudboy: An Animated Short Story of Procrastination

    Get PDF
    Procrastination is becoming an issue of people daily lives. This thesis aims to use a short film called Mudboy to investigate what is the main factors that caused procrastination, and raise public awareness of procrastination, through a story about lazy boy whom turns himself into mud whenever he feels like running away from doing his work. Mudboy was developed based on a strictly scheduled plan. More specifically, in the first stage, research and planning were conducted, with significant emphasis on idea creation, story creation, and animatic design. Following the theories and evidence of comprehensive research, a 3D animation story integrating fluid motion concepts combined with a narrative is applied to dramatize the impacts of procrastination upon human behavior. In this stage, modeling for characters was conducted, along with scene design, scene modeling, layout, and mapping and textures. As the leading figure of the story is a boy, a series of character models and sketches are designed in different statuses, including liquid status, various facial expressions, and so forth. When it comes to the story plots, with applications of character modeling and scene modeling. The final phase of the whole thesis covers character animation, lighting, and rendering. In the end, the thesis concluded three main methods, which are changing the environment, focusing on the process and offering reward, to overcome procrastination. This thesis illustrates the cause and effect of procrastination, hence it reminds audiences to pay attention to procrastination and to surmount procrastination

    Communication Efficient Secret Sharing

    Get PDF
    A secret sharing scheme is a method to store information securely and reliably. Particularly, in a threshold secret sharing scheme, a secret is encoded into nn shares, such that any set of at least t1t_1 shares suffice to decode the secret, and any set of at most t2<t1t_2 < t_1 shares reveal no information about the secret. Assuming that each party holds a share and a user wishes to decode the secret by receiving information from a set of parties; the question we study is how to minimize the amount of communication between the user and the parties. We show that the necessary amount of communication, termed "decoding bandwidth", decreases as the number of parties that participate in decoding increases. We prove a tight lower bound on the decoding bandwidth, and construct secret sharing schemes achieving the bound. Particularly, we design a scheme that achieves the optimal decoding bandwidth when dd parties participate in decoding, universally for all t1≀d≀nt_1 \le d \le n. The scheme is based on Shamir's secret sharing scheme and preserves its simplicity and efficiency. In addition, we consider secure distributed storage where the proposed communication efficient secret sharing schemes further improve disk access complexity during decoding.Comment: submitted to the IEEE Transactions on Information Theory. New references and a new construction adde
    • …
    corecore