258 research outputs found
Online Deception Detection Refueled by Real World Data Collection
The lack of large realistic datasets presents a bottleneck in online
deception detection studies. In this paper, we apply a data collection method
based on social network analysis to quickly identify high-quality deceptive and
truthful online reviews from Amazon. The dataset contains more than 10,000
deceptive reviews and is diverse in product domains and reviewers. Using this
dataset, we explore effective general features for online deception detection
that perform well across domains. We demonstrate that with generalized features
- advertising speak and writing complexity scores - deception detection
performance can be further improved by adding additional deceptive reviews from
assorted domains in training. Finally, reviewer level evaluation gives an
interesting insight into different deceptive reviewers' writing styles.Comment: 10 pages, Accepted to Recent Advances in Natural Language Processing
(RANLP) 201
Two generalizations of ideal matrices and their applications
In this paper, two kinds of generalizations of ideal matrices, generalized
ideal matrices and double ideal matrices. are obtained and studied, The
concepts of generalized ideal matrices and double ideal matrices are proposed,
and their ranks and maxima.linearly independent groups are verified.The initial
motivation to study double cyclic matrices is to study the quasi cyclic codes
of the fractional index. In this paper, the generalized form of the quasi
cyclic codes, i.e. the {\phi}-quasi cyclic codes. and the construction of the
generated matrix are given by the double ideal matrix
A Graph-based Approach for Detecting Critical Infrastructure Disruptions on Social Media in Disasters
The objective of this paper is to propose and test a graph-based approach for detection of critical infrastructure disruptions in social media data in disasters. Understanding the situation and disruptive events of critical infrastructure is essential to effective disaster response and recovery of communities. The potential of social media data for situation awareness during disasters has been highlighted in recent studies. However, the application of social sensing in detecting disruptions of critical infrastructure is limited because existing approaches cannot provide complete and non-ambiguous situational information about critical infrastructure. Therefore, to address this methodological gap, we developed a graph-based approach including data filtering, burst time-frame detection, content similarity and graph analysis. A case study of Hurricane Harvey in 2017 in Houston was conducted to illustrate the application of the proposed approach. The findings highlighted the temporal patterns of critical infrastructure events that occurred in disasters including disruptive events and their adverse impacts on communities. The findings also provided insights for better understanding critical infrastructure interdependencies in disasters. From the practical perspective, the proposed methodology study can improve the ability of community members, first responders and decision makers to detect and respond to infrastructure disruptions in disasters
Weakly-supervised Fine-grained Event Recognition on Social Media Texts for Disaster Management
People increasingly use social media to report emergencies, seek help or
share information during disasters, which makes social networks an important
tool for disaster management. To meet these time-critical needs, we present a
weakly supervised approach for rapidly building high-quality classifiers that
label each individual Twitter message with fine-grained event categories. Most
importantly, we propose a novel method to create high-quality labeled data in a
timely manner that automatically clusters tweets containing an event keyword
and asks a domain expert to disambiguate event word senses and label clusters
quickly. In addition, to process extremely noisy and often rather short
user-generated messages, we enrich tweet representations using preceding
context tweets and reply tweets in building event recognition classifiers. The
evaluation on two hurricanes, Harvey and Florence, shows that using only 1-2
person-hours of human supervision, the rapidly trained weakly supervised
classifiers outperform supervised classifiers trained using more than ten
thousand annotated tweets created in over 50 person-hours.Comment: In Proceedings of the AAAI 2020 (AI for Social Impact Track). Link:
https://aaai.org/ojs/index.php/AAAI/article/view/539
NMI inhibits cancer stem cell traits by downregulating hTERT in breast cancer.
N-myc and STAT interactor (NMI) has been proved to bind to different transcription factors to regulate a variety of signaling mechanisms including DNA damage, cell cycle and epithelial-mesenchymal transition. However, the role of NMI in the regulation of cancer stem cells (CSCs) remains poorly understood. In this study, we investigated the regulation of NMI on CSCs traits in breast cancer and uncovered the underlying molecular mechanisms. We found that NMI was lowly expressed in breast cancer stem cells (BCSCs)-enriched populations. Knockdown of NMI promoted CSCs traits while its overexpression inhibited CSCs traits, including the expression of CSC-related markers, the number of CD44+CD24- cell populations and the ability of mammospheres formation. We also found that NMI-mediated regulation of BCSCs traits was at least partially realized through the modulation of hTERT signaling. NMI knockdown upregulated hTERT expression while its overexpression downregulated hTERT in breast cancer cells, and the changes in CSCs traits and cell invasion ability mediated by NMI were rescued by hTERT. The in vivo study also validated that NMI knockdown promoted breast cancer growth by upregulating hTERT signaling in a mouse model. Moreover, further analyses for the clinical samples demonstrated that NMI expression was negatively correlated with hTERT expression and the low NMI/high hTERT expression was associated with the worse status of clinical TNM stages in breast cancer patients. Furthermore, we demonstrated that the interaction of YY1 protein with NMI and its involvement in NMI-mediated transcriptional regulation of hTERT in breast cancer cells. Collectively, our results provide new insights into understanding the regulatory mechanism of CSCs and suggest that the NMI-YY1-hTERT signaling axis may be a potential therapeutic target for breast cancers
- …