24 research outputs found

    Homogenisation of water and sediment bacterial communities in a shallow lake (lake Balihe, China)

    Get PDF
    Planktonic and benthic bacterial communities hold central roles in the functioning of freshwater ecosystems and mediate key ecosystem services such as primary production and nutrient remineralisation. Although it is clear that such communities vary in composition both within and between lakes, the environmental factors and processes shaping the diversity and composition of freshwater bacteria are still not fully understood. In order to assess seasonal and spatial variability in lake bacterial communities and identify environmental factors underpinning biogeographical patterns, we performed a large-scale sampling campaign with paired water and sediment sample collection at 18 locations during four seasons in Lake Balihe, a subtropical shallow fish-farming lake in mid-eastern China. Pelagic and benthic bacterial communities were distinctly different in terms of diversity, taxonomic composition and community structure, with Actinobacteria, Bacteroidetes, Cyanobacteria and Alphaproteobacteria dominating lake water, and Acidobacteria, Bacteroidetes, Chloroflexi, Gammaproteobacteria and Deltaproteobacteria dominating sediment. Nevertheless, these two communities had stronger spatial concordance and overlap in taxa during spring and autumn seasons. Together, the main drivers of both the spatial and temporal variations in Lake Balihe bacterial communities were identified as water temperature, turbidity, nitrogen and phosphorus availability, and thermal stratification controlled by wind-mixing and activity of the dense farmed fish populations. Notably, populations affiliated with Firmicutes, known to be abundant in fish gut microbiome, were especially abundant in the summer season and locations where high fish biomass was found, suggesting a potential link between fish gut microbiome and the pelagic bacterial communities. Our findings demonstrated seasonal homogenisation of pelagic and benthic bacterial communities linked to marked shifts in a set of seasonally-driven environmental variables including water temperature and nutrient availability

    Phytoplankton Community Response to Environmental Factors along a Salinity Gradient in a Seagoing River, Tianjin, China

    No full text
    A river-estuary ecosystem usually features a distinct salinity gradient and a complex water environment, so it is enormously valuable to study the response mechanism of living organisms to multiple abiotic factors under salinity stress. Phytoplankton, as an important part of aquatic microorganisms, has always been of concern for its crucial place in the aquatic ecosystem. In this study, phytoplankton data and 18 abiotic factors collected from 15 stations in Duliujian River, a seagoing river, were investigated in different seasons. The results showed that the river studied was of a Cyanophyta-dominant type. Salinity (SAL) was the key control factor for phytoplankton species richness, while water temperature (WT) was critical not only for species richness, but also community diversity, and the abundance and biomass of dominant species. Apart from WT, the abundance and biomass of dominant species were also driven by total nitrogen (TN), nitrate (NO3−), pH, and water transparency (SD). Moreover, total dissolved phosphorus (TDP), pH, and chemical oxygen demand (COD) were crucial for community diversity and evenness. The bloom of dominant species positively associated with TDP led to lower diversity and evenness in autumn. In addition, when available nitrogen was limited, Pseudoanabaena sp. could obtain a competitive advantage through the N2 fixation function. Increased available nitrogen concentration could favor the abundance of Chlorella vulgaris to resist the negative effect of WT. The results show that Oscillatoria limosa could serve as an indicator of organic contamination, and nutrient-concentration control must be effective to inhibit Microcystis bloom. This could help managers to formulate conservation measures

    Hopf Bifurcation, Hopf-Hopf Bifurcation, and Period-Doubling Bifurcation in a Four-Species Food Web

    No full text
    Complex dynamics of a four-species food web with two preys, one middle predator, and one top predator are investigated. Via the method of Jacobian matrix, the stability of coexisting equilibrium for all populations is determined. Based on this equilibrium, three bifurcations, i.e., Hopf bifurcation, Hopf-Hopf bifurcation, and period-doubling bifurcation, are analyzed by center manifold theorem, bifurcation theorem, and numerical simulations. We reveal that, influenced by the three bifurcations, the food web can exhibit very complex dynamical behaviors, including limit cycles, quasiperiodic behaviors, chaotic attractors, route to chaos, period-doubling cascade in orbits of period 2, 4, and 8 and period 3, 6, and 12, periodic windows, intermittent period, and chaos crisis. However, the complex dynamics may disappear with the extinction of one of the four populations, which may also lead to collapse of the food web. It suggests that the dynamical complexity and food web stability are determined by the food web structure and existing populations

    Neimark-Sacker-Turing Instability and Pattern Formation in a Spatiotemporal Discrete Predator-Prey System with Allee Effect

    No full text
    A spatiotemporal discrete predator-prey system with Allee effect is investigated to learn its Neimark-Sacker-Turing instability and pattern formation. Based on the occurrence of stable homogeneous stationary states, conditions for Neimark-Sacker bifurcation and Turing instability are determined. Numerical simulations reveal that Neimark-Sacker bifurcation triggers a route to chaos, with the emergence of invariant closed curves, periodic orbits, and chaotic attractors. The occurrence of Turing instability on these three typical dynamical behaviors leads to the formation of heterogeneous patterns. Under the effects of Neimark-Sacker-Turing instability, pattern evolution process is sensitive to tiny changes of initial conditions, suggesting the occurrence of spatiotemporal chaos. With application of deterministic initial conditions, transient symmetrical patterns are observed, demonstrating that ordered structures can exist in chaotic processes. Moreover, when local kinetics of the system goes further on the route to chaos, the speed of symmetry breaking becomes faster, leading to more fragmented and more disordered patterns at the same evolution time. The rich spatiotemporal complexity provides new comprehension on predator-prey coexistence in the ways of spatiotemporal chaos

    Coupled Effects of Turing and Neimark-Sacker Bifurcations on Vegetation Pattern Self-Organization in a Discrete Vegetation-Sand Model

    No full text
    Wind-induced vegetation patterns were proposed a long time ago but only recently a dynamic vegetation-sand relationship has been established. In this research, we transformed the continuous vegetation-sand model into a discrete model. Fixed points and stability analyses were then studied. Bifurcation analyses are done around the fixed point, including Neimark-Sacker and Turing bifurcation. Then we simulated the parameter space for both bifurcations. Based on the bifurcation conditions, simulations are carried out around the bifurcation point. Simulation results showed that Neimark-Sacker bifurcation and Turing bifurcation can induce the self-organization of complex vegetation patterns, among which labyrinth and striped patterns are the key results that can be presented by the continuous model. Under the coupled effects of the two bifurcations, simulation results show that vegetation patterns can also be self-organized, but vegetation type changed. The type of the patterns can be Turing type, Neimark-Sacker type, or some other special type. The difference may depend on the relative intensity of each bifurcation. The calculation of entropy may help understand the variance of pattern types

    Influence of Vegetation Filter Strip on Slope Runoff, Sediment Yield and Nutrient Loss

    No full text
    It is an important branch of erosion research to control soil erosion on eroded gullies and slopes by using vegetation filter strip. Several simulated rainfall experiments were carried out in soil tanks filled with loess sandy loam taken from a typical eroded gully area with less vegetation coverage in Yanghe hilly basin in Xuanhua District, Zhangjiakou City, Hebei Province. The soil and water conservation effects of two different vegetation setting modes were compared under the same vegetation strip width and different rainfall intensities and slopes. During the rainfall process, the changes of runoff and sediment yield and nutrient loss were not stable, but the same erosion index had similar variation trends under different combinations of rainfall intensity, slope and vegetation coverage. Multiple regression results showed that runoff and sediment production in eroded gully can be effectively reduced through vegetation filter strips, which are jointly affected by rainfall intensity and slope. There was no significant difference in the amount of runoff and sediment yield between the two vegetation setting modes. Rainfall intensity and slope gradient showed different strengths of impact on nutrient loss. Through cluster analysis, the results showed that the impacts of rainfall intensity, slope gradient and vegetation setting modes on soil and water loss on slope can be equal or offset. In general, setting vegetation filter strips can offset the effects of rainfall intensity and slope, but vegetation regulation of erosion was not obvious under extreme rainfall and steep slope conditions. What’s more, rainfall intensity had a dominant effect on erosion. The results in this research may provide reference for practical application of vegetation filter strips on eroded slopes

    Temporal and Spatial Patterns of Sediment Microbial Communities and Driving Environment Variables in a Shallow Temperate Mountain River

    No full text
    Microbial communities in sediment play an important role in the circulation of nutrients in aquatic ecosystems. In this study, the main environmental factors and sediment microbial communities were investigated bimonthly from August 2018 to June 2020 at River Taizicheng, a shallow temperate mountain river at the core area of the 2022 Winter Olympics. Microbial community structure was analyzed using 16S rRNA genes (bacteria 16S V3 + V4 and archaea 16S V4 + V5) and high-throughput sequencing technologies. Structure equation model (SEM) and canonical correspondence analysis (CCA) were used to explore the driving environmental factors of the microbial community. Our results showed that the diversity indices of the microbial community were positively influenced by sediment nutrients but negatively affected by water nutrients. Bacteroidetes and Proteobacteria were the most dominant phyla. The best-fitted SEM model indicated that environmental variables not only affected community abundance directly, but also indirectly through influencing their diversity. Flavobacterium, Arenimonas and Terrimonas were the dominant genera as a result of enriched nutrients. The microbial community had high spatial–temporal autocorrelation. CCA showed that DO, WT and various forms of phosphorus were the main variables affecting the temporal and spatial patterns of the microbial community in the river. The results will be helpful in understanding the driving factors of microbial communities in temperate monsoon areas
    corecore