2,908 research outputs found

    Closed-form Approximation for Performance Bound of Finite Blocklength Massive MIMO Transmission

    Full text link
    Ultra-reliable low latency communications (uRLLC) is adopted in the fifth generation (5G) mobile networks to better support mission-critical applications that demand high level of reliability and low latency. With the aid of well-established multiple-input multiple-output (MIMO) information theory, uRLLC in the future 6G is expected to provide enhanced capability towards extreme connectivity. Since the latency constraint can be represented equivalently by blocklength, channel coding theory at finite block-length plays an important role in the theoretic analysis of uRLLC. On the basis of Polyanskiy's and Yang's asymptotic results, we first derive the exact close-form expressions for the expectation and variance of channel dispersion. Then, the bound of average maximal achievable rate is given for massive MIMO systems in ideal independent and identically distributed fading channels. This is the study to reveal the underlying connections among the fundamental parameters in MIMO transmissions in a concise and complete close-form formula. Most importantly, the inversely proportional law observed therein implies that the latency can be further reduced at expense of spatial degrees of freedom

    Prevention of in-stent restenosis with endothelial progenitor cell (EPC) capture stent placement combined with regional EPC transplantation: An atherosclerotic rabbit model

    Get PDF
    Background: Even with drug-eluting stents, the risk of in-stent restenosis (ISR) remains high. The goal of this study was to investigate the use of an endothelial progenitor cell (EPC) capture stent plus regional EPC transplantation to reduce the ISR rate. Methods: Endothelial progenitor cell capture stents were fabricated using fibrin gel and anti-CD34 plus anti-VEGFR-2 dual antibodies. Twenty male New Zealand white rabbits established as an atherosclerotic model were randomly divided into two groups: group 1 (n = 10), in which EPC capture stents were deployed into the right iliac artery; and group 2 (n = 10), in which sirolimus-eluting stents were placed. In both groups, EPCs were transplanted into target vessels beyond the stents, with outflow blocked. Radiologic-pathologic correlation outcomes were reviewed after 2 months.  Results: The technical success rate of EPC capture stent placement plus EPC transplantation was 100%. The ISR rate in group 1 was lower than in group 2 (1/10 vs. 4/10; p > 0.05). Minimal luminal diameters were larger in group 1 than in group 2 (computed tomographic angiography, 1.85 ± 0.15 mm vs. 1.50 ± 0.20 mm; duplex ultrasound, 1.90 ± 0.10 mm vs. 1.70 ± 0.30 mm; p > 0.05). Transplanted EPCs were tracked positively only in group 1. Pathologic analysis demonstrated neointimal hyperplasia thickness of 0.21 ± 0.09 mm in group 1 vs. 0.11 ± 0.07 mm in group 2 (p < 0.05).  Conclusion: Endothelial progenitor cell capture stent placement plus local EPC transplant decreases the ISR rate through thrombosis reduction rather than through neointimal hyperplasia inhibition

    MicroRNA roles in beta-catenin pathway

    Get PDF
    β-catenin, a key factor in the Wnt signaling pathway, has essential functions in the regulation of cell growth and differentiation. Aberrant β-catenin signaling has been linked to various disease pathologies, including an important role in tumorigenesis. Here, we review the regulation of the Wnt signaling pathway as it relates to β-catenin signaling in tumorigenesis, with particular focus on the role of microRNAs. Finally, we discuss the potential of β-catenin targeted therapeutics for cancer treatment

    Dihydromyricetin attenuates depressive-like behaviors in mice by inhibiting the AGE-RAGE signaling pathway

    Get PDF
    Depression is a complex mental disorder, affecting approximately 280 million individuals globally. The pathobiology of depression is not fully understood, and the development of new treatments is urgently needed. Dihydromyricetin (DHM) is a natural flavanone, mainly distributed in Ampelopsis grossedentata. DHM has demonstrated a protective role against cardiovascular disease, diabetes, liver disease, cancer, kidney injury and neurodegenerative disorders. In the present study, we examined the protective effect of DHM against depression in a chronic depression mouse model induced by corticosterone (CORT). Animals exposed to CORT displayed depressive-like behaviors; DHM treatment reversed these behaviors. Network pharmacology analyses showed that DHM’s function against depression involved a wide range of targets and signaling pathways, among which the inflammation-linked targets and signaling pathways were critical. Western blotting showed that CORT-treated animals had significantly increased levels of the advanced glycation end product (AGE) and receptor of AGE (RAGE) in the hippocampus, implicating activation of the AGE-RAGE signaling pathway. Furthermore, enzyme-linked immunosorbent assay (ELISA) detected a marked increase in the production of proinflammatory cytokines, interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-alpha (TNFα) in the hippocampus of CORT-treated mice. DHM administration significantly counteracted these CORT-induced changes. These findings suggest that protection against depression by DHM is mediated by suppression of neuroinflammation, predominantly via the AGE-RAGE signaling pathway

    Are Yellow Sticky Cards and Light Traps Effective on Tea Green Leafhoppers and Their Predators in Chinese Tea Plantations?

    Get PDF
    In Chinese tea plantations, yellow sticky cards and light traps are increasingly used to control insect pests, especially the tea green leafhopper . In this study, a 16-week open-field experiment with daily weather monitoring was designed to test the responses of tea green leafhopper, parasitoids and spiders to yellow sticky cards and three light traps with different wavelengths (covered with sticky cards). An exclosure experiment was also designed to further test the influence of the three light systems (without sticky card) on the same species. The results showed that all three light emitting diode (LED) light traps (white, green and yellow) and yellow sticky cards attracted many more male adults than females during the course of the open field experiment, with less than 25% of trapped adults being females. Parasitoids and spiders were also attracted by these systems. Weather variables, especially rainfall, influenced the trapping efficiency. In the exclosure experiment, the population of leafhoppers in the yellow sticky card treatment did not decline significantly, but the number of spiders significantly decreased. The green and white light treatments without sticky cards showed a significant control of and no obvious harm to spiders. These results suggest that yellow sticky cards and light traps have limited capacity to control tea green leafhoppers. However, light, especially green light, may be a promising population control measure for tea green leafhoppers, not as killing agents in the traps, but rather as a behavioral control system

    A Sliced Inverse Regression (SIR) Decoding the Forelimb Movement from Neuronal Spikes in the Rat Motor Cortex

    Get PDF
    Several neural decoding algorithms have successfully converted brain signals into commands to control a computer cursor and prosthetic devices. A majority of decoding methods, such as population vector algorithms (PVA), optimal linear estimators (OLE), and neural networks (NN), are effective in predicting movement kinematics, including movement direction, speed and trajectory but usually require a large number of neurons to achieve desirable performance. This study proposed a novel decoding algorithm even with signals obtained from a smaller numbers of neurons. We adopted sliced inverse regression (SIR) to predict forelimb movement from single-unit activities recorded in the rat primary motor (M1) cortex in a water-reward lever-pressing task. SIR performed weighted principal component analysis (PCA) to achieve effective dimension reduction for nonlinear regression. To demonstrate the decoding performance, SIR was compared to PVA, OLE, and NN. Furthermore, PCA and sequential feature selection (SFS) which are popular feature selection techniques were implemented for comparison of feature selection effectiveness. Among SIR, PVA, OLE, PCA, SFS, and NN decoding methods, the trajectories predicted by SIR (with a root mean square error, RMSE, of 8.47 ± 1.32 mm) was closer to the actual trajectories compared with those predicted by PVA (30.41 ± 11.73 mm), OLE (20.17 ± 6.43 mm), PCA (19.13 ± 0.75 mm), SFS (22.75 ± 2.01 mm), and NN (16.75 ± 2.02 mm). The superiority of SIR was most obvious when the sample size of neurons was small. We concluded that SIR sorted the input data to obtain the effective transform matrices for movement prediction, making it a robust decoding method for conditions with sparse neuronal information
    • …
    corecore