95 research outputs found

    Measurement of permeability for ferrous metallic plates using a novel lift-off compensation technique on phase signature

    Full text link
    Lift-off of sensor affects the prediction of electromagnetic properties for both ferrous and non-ferrous steel plates. In this paper, we developed a strategy to address this issue for ferrous plates. With increased lift-off, the phase of the measured impedance for steel plates reduces. Meanwhile, the magnitude of the impedance signal decreases. Based on these facts, a phase compensation algorithm is developed which corrects the phase change due to lift-off considering the magnitude of the impedance signal. Further, a new magnetic permeability prediction technique is presented, which has been validated by analytical and measured results. With this new technique, the error in permeability prediction is less than 2% within the range of lift-offs tested

    An equivalent-effect phenomenon in eddy current non-destructive testing of thin structures

    Full text link
    The inductance/impedance due to thin metallic structures in non-destructive testing (NDT) is difficult to evaluate. In particular, in Finite Element Method (FEM) eddy current simulation, an extremely fine mesh is required to accurately simulate skin effects especially at high frequencies, and this could cause an extremely large total mesh for the whole problem, i.e. including, for example, other surrounding structures and excitation sources like coils. Consequently, intensive computation requirements are needed. In this paper, an equivalent-effect phenomenon is found, which has revealed that alternative structures can produce the same effect on the sensor response, i.e. mutual impedance/inductance of coupled coils if a relationship (reciprocal relationship) between the electrical conductivity and the thickness of the structure is observed. By using this relationship, the mutual inductance/impedance can be calculated from the equivalent structures with much fewer mesh elements, which can significantly save the computation time. In eddy current NDT, coils inductance/impedance is normally used as a critical parameter for various industrial applications, such as flaw detection, coating and microstructure sensing. Theoretical derivation, measurements and simulations have been presented to verify the feasibility of the proposed phenomenon

    Reduction of Coil-Crack Angle Sensitivity Effect Using a Novel Flux Feature of ACFM Technique

    Get PDF
    Alternating current field measurement (ACFM) testing is one of the promising techniques in the field of non-destructive testing with advantages of the non-contact capability and the reduction of lift-off effects. In this paper, a novel crack detection approach was proposed to reduce the effect of the angled crack (cack orientation) by using rotated ACFM techniques. The sensor probe is composed of an excitation coil and two receiving coils. Two receiving coils are orthogonally placed in the center of the excitation coil where the magnetic field is measured. It was found that the change of the x component and the peak value of the z component of the magnetic field when the sensor probe rotates around a crack followed a sine wave shape. A customized accelerated finite element method solver programmed in MATLAB was adopted to simulate the performance of the designed sensor probe which could significantly improve the computation efficiency due to the small crack perturbation. The experiments were also carried out to validate the simulations. It was found that the ratio between the z and x components of the magnetic field remained stable under various rotation angles. It showed the potential to estimate the depth of the crack from the ratio detected by combining the magnetic fields from both receiving coils (i.e., the x and z components of the magnetic field) using the rotated ACFM technique

    Analysis of Tilt Effect on Notch Depth Profiling Using Thin-Skin Regime of Driver-Pickup Eddy-Current Sensor

    Get PDF
    Electromagnetic eddy current sensors are commonly used to identify and quantify the surface notches of metals. However, the unintentional tilt of eddy current sensors affects results of size profiling, particularly for the depth profiling. In this paper, based on the eddy current thin-skin regime, a revised algorithm has been proposed for the analytical voltage or impedance of a tilted driver–pickup eddy current sensor scanning across a long ideal notch. Considering the resolution of the measurement, the bespoke driver–pickup, also termed as transmitter–receiver (T-R) sensor is designed with a small mean radius of 1 mm. In addition, the T-R sensor is connected to the electromagnetic instrument and controlled by a scanning stage with high spatial travel resolution, with a limit of 0.2 μm and selected as 0.25 mm. Experiments were conducted for imaging of an aluminium sheet with seven machined long notches of different depths using T-R sensor under different tilt angles. By fitting the measured voltage (both real and imaginary part) with proposed analytical algorithms, the depth profiling of notches is less affected by the tilt angle of sensors. From the results, the depth of notches can be retrieved within a deviation of 10% for tilt angles up to 60 degrees

    Kinematics-aware Trajectory Generation and Prediction with Latent Stochastic Differential Modeling

    Full text link
    Trajectory generation and trajectory prediction are two critical tasks for autonomous vehicles, which generate various trajectories during development and predict the trajectories of surrounding vehicles during operation, respectively. However, despite significant advances in improving their performance, it remains a challenging problem to ensure that the generated/predicted trajectories are realistic, explainable, and physically feasible. Existing model-based methods provide explainable results, but are constrained by predefined model structures, limiting their capabilities to address complex scenarios. Conversely, existing deep learning-based methods have shown great promise in learning various traffic scenarios and improving overall performance, but they often act as opaque black boxes and lack explainability. In this work, we integrate kinematic knowledge with neural stochastic differential equations (SDE) and develop a variational autoencoder based on a novel latent kinematics-aware SDE (LK-SDE) to generate vehicle motions. Our approach combines the advantages of both model-based and deep learning-based techniques. Experimental results demonstrate that our method significantly outperforms baseline approaches in producing realistic, physically-feasible, and precisely-controllable vehicle trajectories, benefiting both generation and prediction tasks.Comment: 7 pages, conference paper in motion generatio

    State-Wise Safe Reinforcement Learning With Pixel Observations

    Full text link
    In the context of safe exploration, Reinforcement Learning (RL) has long grappled with the challenges of balancing the tradeoff between maximizing rewards and minimizing safety violations, particularly in complex environments with contact-rich or non-smooth dynamics, and when dealing with high-dimensional pixel observations. Furthermore, incorporating state-wise safety constraints in the exploration and learning process, where the agent must avoid unsafe regions without prior knowledge, adds another layer of complexity. In this paper, we propose a novel pixel-observation safe RL algorithm that efficiently encodes state-wise safety constraints with unknown hazard regions through a newly introduced latent barrier-like function learning mechanism. As a joint learning framework, our approach begins by constructing a latent dynamics model with low-dimensional latent spaces derived from pixel observations. We then build and learn a latent barrier-like function on top of the latent dynamics and conduct policy optimization simultaneously, thereby improving both safety and the total expected return. Experimental evaluations on the safety-gym benchmark suite demonstrate that our proposed method significantly reduces safety violations throughout the training process, and demonstrates faster safety convergence compared to existing methods while achieving competitive results in reward return.Comment: 10 pages, 5 figure
    • …
    corecore