1,013 research outputs found

    Plasma Clusterin and the CLU Gene rs11136000 Variant Are Associated with Mild Cognitive Impairment in Type 2 Diabetic Patients

    Get PDF
    Objective: Type 2 diabetes mellitus (T2DM) is related to an elevated risk of mild cognitive impairment (MCI). Plasma clusterin is reported associated with the early pathology of Alzheimer's disease (AD) and longitudinal brain atrophy in subjects with MCI. The rs11136000 single nucleotide polymorphism within the clusterin (CLU) gene is also associated with the risk of AD. We aimed to investigate the associations among plasma clusterin, rs11136000 genotype and T2DM-associated MCI. Methods: A total of 231 T2DM patients, including 126 MCI and 105 cognitively healthy controls were enrolled in this study. Demographic parameters were collected and neuropsychological tests were conducted. Plasma clusterin and CLU rs11136000 genotype were examined.Results: Plasma clusterin was significantly higher in MCI patients than in control group (p=0.007). In subjects with MCI, plasma clusterin level was negatively correlated with Montreal cognitive assessment and auditory verbal learning test_delayed recall scores (p=0.027 and p=0.020, respectively). After adjustment for age, educational attainment, and gender, carriers of rs11136000 TT genotype demonstrated reduced risk for MCI compared with the CC genotype carriers (OR=0.158, χ2=4.113, p=0.043). Multivariable regression model showed that educational attainment, duration of diabetes, HDL-c, and plasma clusterin levels are associated with MCI in T2DM patients.Conclusions: Plasma clusterin was associated with MCI and may reflect a protective response in T2DM patients. TT genotype exhibited a reduced risk of MCI compared to CC genotype. Further investigations should be conducted to determine the role of clusterin in cognitive decline

    Parameter and Computation Efficient Transfer Learning for Vision-Language Pre-trained Models

    Full text link
    With ever increasing parameters and computation, vision-language pre-trained (VLP) models exhibit prohibitive expenditure in downstream task adaption. Recent endeavors mainly focus on parameter efficient transfer learning (PETL) for VLP models by only updating a small number of parameters. However, excessive computational overhead still plagues the application of VLPs. In this paper, we aim at parameter and computation efficient transfer learning (PCETL) for VLP models. In particular, PCETL not only needs to limit the number of trainable parameters in VLP models, but also to reduce the computational redundancy during inference, thus enabling a more efficient transfer. To approach this target, we propose a novel dynamic architecture skipping (DAS) approach towards effective PCETL. Instead of directly optimizing the intrinsic architectures of VLP models, DAS first observes the significances of their modules to downstream tasks via a reinforcement learning (RL) based process, and then skips the redundant ones with lightweight networks, i.e., adapters, according to the obtained rewards. In this case, the VLP model can well maintain the scale of trainable parameters while speeding up its inference on downstream tasks. To validate DAS, we apply it to two representative VLP models, namely ViLT and METER, and conduct extensive experiments on a bunch of VL tasks. The experimental results not only show the great advantages of DAS in reducing computational complexity, e.g. -11.97% FLOPs of METER on VQA2.0, but also confirm its competitiveness against existing PETL methods in terms of parameter scale and performance. Our source code is given in our appendix

    Approximated Prompt Tuning for Vision-Language Pre-trained Models

    Full text link
    Prompt tuning is a parameter-efficient way to deploy large-scale pre-trained models to downstream tasks by adding task-specific tokens. In terms of vision-language pre-trained (VLP) models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks, which greatly exacerbates the already high computational overhead. In this paper, we revisit the principle of prompt tuning for Transformer-based VLP models and reveal that the impact of soft prompt tokens can be actually approximated via independent information diffusion steps, thereby avoiding the expensive global attention modeling and reducing the computational complexity to a large extent. Based on this finding, we propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning. To validate APT, we apply it to two representative VLP models, namely ViLT and METER, and conduct extensive experiments on a bunch of downstream tasks. Meanwhile, the generalization of APT is also validated on CLIP for image classification. The experimental results not only show the superior performance gains and computation efficiency of APT against the conventional prompt tuning methods, e.g., +6.6% accuracy and -64.62% additional computation overhead on METER, but also confirm its merits over other parameter-efficient transfer learning approaches

    Black-Box Dissector: Towards Erasing-based Hard-Label Model Stealing Attack

    Full text link
    Previous studies have verified that the functionality of black-box models can be stolen with full probability outputs. However, under the more practical hard-label setting, we observe that existing methods suffer from catastrophic performance degradation. We argue this is due to the lack of rich information in the probability prediction and the overfitting caused by hard labels. To this end, we propose a novel hard-label model stealing method termed \emph{black-box dissector}, which consists of two erasing-based modules. One is a CAM-driven erasing strategy that is designed to increase the information capacity hidden in hard labels from the victim model. The other is a random-erasing-based self-knowledge distillation module that utilizes soft labels from the substitute model to mitigate overfitting. Extensive experiments on four widely-used datasets consistently demonstrate that our method outperforms state-of-the-art methods, with an improvement of at most 8.27%8.27\%. We also validate the effectiveness and practical potential of our method on real-world APIs and defense methods. Furthermore, our method promotes other downstream tasks, \emph{i.e.}, transfer adversarial attacks
    • …
    corecore