86 research outputs found

    New Osmosis Law and Theory: the New Formula that Replaces van't Hoff Osmotic Pressure Equation

    Full text link
    This article derived a new abstract concept from the osmotic process and concluded it via "osmotic force" with a new law -- "osmotic law". The "osmotic law" describes that, in an osmotic system, osmolyte moves osmotically from the side with higher "osmotic force" to the side with lower "osmotic force". In addition, it was proved mathematically that the osmotic process could be explained perfectly via "osmotic force" and "osmotic laws", which can prevent the difficulties in using current "osmotic pressure" concept to explain the osmotic process and phenomenon. A theory and equation to describe the curve of osmotic pressure vs. different ideal solution concentrations are also derived, which can overcome the limitedness and incompleteness of van't Hoff osmotic pressure formula (a linear equation) which is applicable to ideal dilute solution only

    Effect of Fortified Daqu on the Microbial Community and Flavor in Chinese Strong-Flavor Liquor Brewing Process

    Get PDF
    Daqu, an important fermentation starter for the production of Chinese liquor, as used in the current study included traditional Daqu and fortified Daqu inoculated with Bacillus velezensis and Bacillus subtilis. To evaluate the effect of fortified Daqu on strong-flavor liquor production, the differences of microbial communities among three inoculation patterns of fermented grains (FG) were analyzed by the Illumina MiSeq platform. A higher relative abundance of dominant genera including Bacillus, Lactococcus, Aspergillus, and Candida, and lower relative abundance of Lactobacillus, were observed in FG50, in which mixed Daqu (traditional: fortified Daqu = 1: 1, w/w, 50% fortified Daqu) was used as the starter. Then, volatile compounds of their distillations were also examined by HS-SPME-GC-MS. The results showed that the contents of skeleton flavor components, mainly including important esters and aromatic compounds, were higher in the corresponding liquor L50, which distillated from FG50. Moreover, most esters mainly positively correlated with Lactobacillus and Candida in the bottom layer of FG fermented with 50% fortified Daqu (FG50-B). Aromatic compounds were strongly positively correlated with Bacillus and Aspergillus in the middle layer of FG with 50% fortified Daqu used (FG50-M). In particular, hexyl hexanoate showed a positive correlation with higher abundances of Ruminococcus in the FG with addition of 100% fortified Daqu (FG100). This study observed microbial compositions in the FG with fortified Daqu addition, and it further revealed the correlations between pivotal microbes and main flavor compounds. These results may help to develop effective strategies to regulate microbes for the brewing process and further improve the flavors of Chinese liquor

    Named Entity Detection and Injection for Direct Speech Translation

    Full text link
    In a sentence, certain words are critical for its semantic. Among them, named entities (NEs) are notoriously challenging for neural models. Despite their importance, their accurate handling has been neglected in speech-to-text (S2T) translation research, and recent work has shown that S2T models perform poorly for locations and notably person names, whose spelling is challenging unless known in advance. In this work, we explore how to leverage dictionaries of NEs known to likely appear in a given context to improve S2T model outputs. Our experiments show that we can reliably detect NEs likely present in an utterance starting from S2T encoder outputs. Indeed, we demonstrate that the current detection quality is sufficient to improve NE accuracy in the translation with a 31% reduction in person name errors.Comment: \c{opyright} 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Characterizing Relationship of Microbial Diversity and Metabolite in Sichuan Xiaoqu

    Get PDF
    Xiaoqu is a fermentation starter used in the production of Xiaoqu jiu, which is also a traditional Chinese liquor. The quality and microbial community characteristics of Xiaoqu is closely related with the yield and flavor feature of fresh Xiaoqu jiu. The present study aims to explore the mystery behind microbial diversity and volatiles of Xiaoqu through polyphasic detection methods such as the Illumina MiSeq platform and the metabolite analyzing method. Results showed that differences in microbial community diversity among samples were significant. The hydrolytic ability was positively correlated with α- and β-diversity of bacteria, but negatively correlated with that of fungi. Staphylococcus and Weissella were the dominant bacteria, while Rhizopus and Candida were the dominant fungi. The abundance of bacteria in sample No3 ranged from 33.66 to 91.53%, while sample No4 the abundance of fungi ranged from 58.51 to 48.72%. The difference of microbial community diversity resulted in a discrepancy of volatile profiles and interaction relationship among the genus. Twenty-four dominant bacteria and seven dominant fungi were correlated with 20 different volatiles. This study provides a scientific perspective of the uniformity and stability of Xiaoqu jiu and might aid in controlling its manufacturing process

    Effect of Microbial Community in Artificial Pit Mud on the Formation of Flavor Metabolites during the Fermentation of Nongxiangxing Baijiu

    Get PDF
    In this study, a small-scale simulated fermentation system of fermented grains (Jiupei in Chinese) without pit mud (PM) was used as a control, and the differences in the microbial community and metabolite components between the PM and control groups were compared. The results indicated that PM significantly enhanced the contents of major flavor compounds in Jiupei including butyric acid, caproic acid, ethyl acetate, ethyl butyrate, and ethyl caproate, and reduced the contents of lactic acid and ethyl lactate. For both groups, the relative abundance of Lactobacillus, one of the dominant bacteria in the upper and bottom layers of Jiupei, significantly increased at the initial stage, and showed a slight difference between them at the end of fermentation. The decay period of Lactobacillus in the PM group was about 15 days earlier than that in the control group. At the same time, the relative abundance of Rhodococcus in the control group, and the relative abundance of Kroppenstedtia, Clostridium_sensu_stricto_12, and Acetobacter in the PM group increased. The abundance of most of the enzymes in the Embden-Meyerhof-Parnas (EMP) pathway, as well as that of caproic acid synthase (EC 1.3.1.38, EC 2.3.1.16, EC 6.2.1.1) and butyric acid synthase (EC 2.3.1.9, EC 2.8.3.8) increased during fermentation, and the abundance of these enzymes was significantly higher in the bottom layer of Jiupei than in the upper layer. The abundance of lactate dehydrogenase (EC 1.1.1.27), which uses lactic acid as a substrate, increased in the PM group. These findings reveal the contribution of PM to the microbial communities and metabolite components of Jiupei

    catena-Poly[bis­[octa­kis(dimethyl sulf­oxide)praseodymium(III)] hexa-μ3-sulfido-dodeca-μ2-sulfido-hexa­sul­fido­hexa­silverhexa­molybdenum]

    Get PDF
    The title compound, {[Pr(C2H6OS)8]2[Mo6Ag6S24]}n, contains polymeric Mo6S24Ag6 2− anions and [Pr(Me2SO)8]3+ cations, forming a one-dimensional polymeric Mo/S/Ag cluster. The anion assumes the conformation of a zigzag chain. The trivalent cations are arrayed amongst the anionic chains and are well separated from each other. Each Mo and Ag atom is coordinated by four S atoms in a distorted tetra­hedral geometry. The Pr3+ atom is coordinated by eight dimethyl sulfoxide ligands, forming a polyhedron-shaped distorted square anti­prism

    Subcarrier multiplexing for high-speed optical transmission

    Get PDF
    ©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.The performance of high-speed digital fiber-optic transmission using subcarrier multiplexing (SCM) is investigated both analytically and numerically. In order to reduce the impact of fiber chromatic dispersion and increase bandwidth efficiency, optical single-sideband (OSSB) modulation was used. Because frequency spacing between adjacent subcarriers can be much narrower than in a conventional DWDM system, nonlinear crosstalk must be considered. Although chromatic dispersion is not a limiting factor in SCM systems because the data rate at each subcarrier is low, polarization mode dispersion (PMD) has a big impact on the system performance if radiofrequency (RF) phase detection is used in the receiver. In order to optimize the system performance, tradeoffs must be made between data rate per subcarrier, levels of modulation, channel spacing between subcarriers, optical power, and modulation indexes. A 10-Gb/s SCM test bed has been set up in which 4 x 2.5 Gb/s data streams are combined into one wavelength that occupies a 20-GHz optical bandwidth. OSSB modulation is used in the experiment. The measured results agree well with the analytical prediction
    corecore