6,208 research outputs found

    Maxwell-Hydrodynamic Model for Simulating Nonlinear Terahertz Generation from Plasmonic Metasurfaces

    Get PDF
    The interaction between the electromagnetic field and plasmonic nanostructures leads to both the strong linear response and inherent nonlinear behavior. In this paper, a time-domain hydrodynamic model for describing the motion of electrons in plasmonic nanostructures is presented, in which both surface and bulk contributions of nonlinearity are considered. A coupled Maxwell-hydrodynamic system capturing full-wave physics and free electron dynamics is numerically solved with the parallel finite-difference time-domain (FDTD) method. The validation of the proposed method is presented to simulate linear and nonlinear responses from a plasmonic metasurface. The linear response is compared with the Drude dispersion model and the nonlinear terahertz emission from a difference-frequency generation process is validated with theoretical analyses. The proposed scheme is fundamentally important to design nonlinear plasmonic nanodevices, especially for efficient and broadband THz emitters.Comment: 8 pages, 7 figures, IEEE Journal on Multiscale and Multiphysics Computational Techniques, 201

    Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials

    Full text link
    Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities for characterizing and designing nonlinear nanodevices.Comment: 11 pages, 14 figure

    Nonlinearity in the Dark: Broadband Terahertz Generation with Extremely High Efficiency

    Get PDF
    Plasmonic metamaterials and metasurfaces offer new opportunities in developing high performance terahertz emitters and detectors beyond the limitations of conventional nonlinear materials. However, simple meta-atoms for second-order nonlinear applications encounter fundamental trade-offs in the necessary symmetry breaking and local-field enhancement due to radiation damping that is inherent to the operating resonant mode and cannot be controlled separately. Here we present a novel concept that eliminates this restriction obstructing the improvement of terahertz generation efficiency in nonlinear metasurfaces based on metallic nanoresonators. This is achieved by combining a resonant dark-state metasurface, which locally drives nonlinear nanoresonators in the near field, with a specific spatial symmetry that enables destructive interference of the radiating linear moments of the nanoresonators, and perfect absorption via simultaneous electric and magnetic critical coupling of the pump radiation to the dark mode. Our proposal allows eliminating linear radiation damping, while maintaining constructive interference and effective radiation of the nonlinear components. We numerically demonstrate a giant second-order nonlinear susceptibility around Hundred-Billionth m/V, a one order improvement compared with the previously reported split-ring-resonator metasurface, and correspondingly, a 2 orders of magnitude enhanced terahertz energy extraction should be expected with our configuration under the same conditions. Our study offers a paradigm of high efficiency tunable nonlinear metadevices and paves the way to revolutionary terahertz technologies and optoelectronic nanocircuitry.Comment: 6 pages, 4 figure

    1-Methyl-4-(1-methyl-1H-benzimidazol-2-yl)pyridinium iodide

    Get PDF
    The cation of the title compound, C14H14N3 +·I−, is non-planar, the dihedral angle between the benzimidazole and the 1-methyl­pyridinium planes being 37.4 (2)°. The crystal structure is stabilized by weak π–π stacking inter­actions, the centroid–centroid distances between 1-methyl­imidazole and benzimidazole planes being 3.678 (4) Å

    Factors Affecting Occupational Exposure to Needlestick and Sharps Injuries among Dentists in Taiwan: A Nationwide Survey

    Get PDF
    BACKGROUND: Although the risks of needlestick and sharps injuries (NSIs) for dentists are well recognized, most papers published only described the frequency of occupational exposure to NSIs. Less has been reported assessing factors contributing to exposure to NSIs. The purpose of this study was to update the epidemiology of NSIs among dentists in Taiwan and identify factors affecting NSIs in order to find preventive strategies. METHODOLOGY/PRINCIPAL FINDINGS: A nationwide survey was conducted in dentists at 60 hospitals and 340 clinics in Taiwan. The survey included questions about factors supposedly affecting exposure to NSIs, such as dentist and facility characteristics, knowledge and attitudes about infectious diseases, and practices related to infection control. Univariate and multivariate logistic regression analyses were conducted to determine the association between risk factors and exposure to NSIs. In total, 434 (74.8%) of 580 dentists returned the survey questionnaires, and 100 (23.0%) reported that they had experienced more than one NSI per week. Our data showed that the risk of occupational NSIs is similarly heightened by an older age (odds ratio [OR], 3.18; 95% confidence interval [CI], 1.62-6.25), more years in practice (OR, 2.57; 95% CI, 1.41-4.69), working in clinics (OR, 1.73; 95% CI, 1.08-2.77), exhibiting less compliance with infection-control procedures (OR, 1.82; 95% CI, 1.04-3.18), having insufficient knowledge of blood-borne pathogens (OR, 1.67; 95% CI, 1.04-2.67), and being more worried about being infected by blood-borne pathogens (OR, 1.82; 95% CI, 1.05-3.13). CONCLUSIONS/SIGNIFICANCE: High rates of NSIs and low compliance with infection-control procedures highly contribute to the chance of acquiring a blood-borne pathogen infection and threaten occupational safety. This study reveals the possible affecting factors and helps in designing prevention strategies for occupational exposure to NSIs
    • …
    corecore