595 research outputs found

    Large Margin Object Tracking with Circulant Feature Maps

    Full text link
    Structured output support vector machine (SVM) based tracking algorithms have shown favorable performance recently. Nonetheless, the time-consuming candidate sampling and complex optimization limit their real-time applications. In this paper, we propose a novel large margin object tracking method which absorbs the strong discriminative ability from structured output SVM and speeds up by the correlation filter algorithm significantly. Secondly, a multimodal target detection technique is proposed to improve the target localization precision and prevent model drift introduced by similar objects or background noise. Thirdly, we exploit the feedback from high-confidence tracking results to avoid the model corruption problem. We implement two versions of the proposed tracker with the representations from both conventional hand-crafted and deep convolution neural networks (CNNs) based features to validate the strong compatibility of the algorithm. The experimental results demonstrate that the proposed tracker performs superiorly against several state-of-the-art algorithms on the challenging benchmark sequences while runs at speed in excess of 80 frames per second. The source code and experimental results will be made publicly available

    Dynamic analysis of reciprocating compressor system with translational clearance and time-varying load

    Get PDF
    Dynamic behavior of reciprocating compressor system, with translational clearance between the crosshead and guide under time-varying cylinder load, is investigated. In order to analyze the dynamic response of the system with translational clearance, a novel nonlinear dynamic model is established based on the Lagrangian approach. The numerical solution of the dynamic equation is calculated by the Runge-Kutta method. The results show that the translational clearance has a great effect on the reciprocating compressor, and the more the translational clearance, the great the influence. Moreover, the phase space of the crosshead reveals that the reciprocating compressor system with translational clearance has chaotic characteristics

    Dynamic analysis of localized defects in rolling bearing systems

    Get PDF
    In this paper, the dynamics of rolling bearing with localized defects of the outer ring and rolling element are investigated. In order to study the nonlinear dynamical behaviors of the rolling bearing precisely, a novel dynamic model of the rolling bearing is established based on the Lagrangian approach. By setting 0.2 mm, 0.4 mm and 0.6 mm local defects on the outer ring and rolling element of bearing respectively, the results demonstrate that the amplitude of the rolling bearing is more intense as the local defect size increases, and the acceleration amplitude fluctuation is more significant than the velocity. In addition, in the case of the same defect size, the vibration of the rolling element defect is more intense than the vibration response caused by the outer ring defect

    SSC-RS: Elevate LiDAR Semantic Scene Completion with Representation Separation and BEV Fusion

    Full text link
    Semantic scene completion (SSC) jointly predicts the semantics and geometry of the entire 3D scene, which plays an essential role in 3D scene understanding for autonomous driving systems. SSC has achieved rapid progress with the help of semantic context in segmentation. However, how to effectively exploit the relationships between the semantic context in semantic segmentation and geometric structure in scene completion remains under exploration. In this paper, we propose to solve outdoor SSC from the perspective of representation separation and BEV fusion. Specifically, we present the network, named SSC-RS, which uses separate branches with deep supervision to explicitly disentangle the learning procedure of the semantic and geometric representations. And a BEV fusion network equipped with the proposed Adaptive Representation Fusion (ARF) module is presented to aggregate the multi-scale features effectively and efficiently. Due to the low computational burden and powerful representation ability, our model has good generality while running in real-time. Extensive experiments on SemanticKITTI demonstrate our SSC-RS achieves state-of-the-art performance.Comment: 8 pages, 5 figures, IROS202
    • …
    corecore