402 research outputs found

    Scaling behavior of online human activity

    Full text link
    The rapid development of Internet technology enables human explore the web and record the traces of online activities. From the analysis of these large-scale data sets (i.e. traces), we can get insights about dynamic behavior of human activity. In this letter, the scaling behavior and complexity of human activity in the e-commerce, such as music, book, and movie rating, are comprehensively investigated by using detrended fluctuation analysis technique and multiscale entropy method. Firstly, the interevent time series of rating behaviors of these three type medias show the similar scaling property with exponents ranging from 0.53 to 0.58, which implies that the collective behaviors of rating media follow a process embodying self-similarity and long-range correlation. Meanwhile, by dividing the users into three groups based their activities (i.e., rating per unit time), we find that the scaling exponents of interevent time series in three groups are different. Hence, these results suggest the stronger long-range correlations exist in these collective behaviors. Furthermore, their information complexities vary from three groups. To explain the differences of the collective behaviors restricted to three groups, we study the dynamic behavior of human activity at individual level, and find that the dynamic behaviors of a few users have extremely small scaling exponents associating with long-range anticorrelations. By comparing with the interevent time distributions of four representative users, we can find that the bimodal distributions may bring the extraordinary scaling behaviors. These results of analyzing the online human activity in the e-commerce may not only provide insights to understand its dynamic behaviors but also be applied to acquire the potential economic interest

    Testing Modeling Assumptions in the West Africa Ebola Outbreak

    Get PDF
    The Ebola virus in West Africa has infected almost 30,000 and killed over 11,000 people. Recent models of Ebola Virus Disease (EVD) have often made assumptions about how the disease spreads, such as uniform transmissibility and homogeneous mixing within a population. In this paper, we test whether these assumptions are necessarily correct, and offer simple solutions that may improve disease model accuracy. First, we use data and models of West African migration to show that EVD does not homogeneously mix, but spreads in a predictable manner. Next, we estimate the initial growth rate of EVD within country administrative divisions and find that it significantly decreases with population density. Finally, we test whether EVD strains have uniform transmissibility through a novel statistical test, and find that certain strains appear more often than expected by chance.Comment: 16 pages, 14 figure

    Hierarchical Structural Models of Portfolio Credit Risk

    Get PDF
    In this thesis, we will study hierarchical structural models of portfolio credit defaults that incorporate cyclical dependence and contagion to capture market phenomena such as multi-humped loss distributions. We will use both analytical methods and Monte Carlo simulations in our study. Some of these new models will be calibrated to standard market models to illustrate their effectiveness in pricing single-name CDS’s and CDO tranches simultaneously
    • …
    corecore