18 research outputs found

    Deep learning guided Android malware and anomaly detection

    Get PDF
    In the past decade, the cyber-crime related to mobile devices has increased. Mobile devices, especially the ones running on Android operating system are particularly interesting to malware creators, as the users often keep the biggest amount of personal information on their mobile devices, such as their contacts, social media profiles, emails, and bank accounts. Both dynamic and static malware analysis is necessary to prevent and detect malware, as both techniques have their benefits and shortcomings. In this paper, we propose a deep learning technique that relies on LSTM and encoder-decoder neural network architectures for dynamic malware analysis based on CPU, memory and battery usage. The proposed system is able to detect and notify users about anomalies in system that is likely consequence of malware behaviour. The method was implemented as a part of OWASP Seraphimdroids anti-malware mechanism and notifies users about anomalies on their devices. The method proved to perform with an F1-score of 79.2%.Comment: First (draft) version of the pape

    Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds

    No full text
    Nanoemulsions have attracted significant attention in food fields and can increase the functionality of the bioactive compounds contained within them. In this paper, the preparation methods, including low-energy and high-energy methods, were first reviewed. Second, the physical and chemical destabilization mechanisms of nanoemulsions, such as gravitational separation (creaming or sedimentation), flocculation, coalescence, Ostwald ripening, lipid oxidation and so on, were reviewed. Then, the impact of different stabilizers, including emulsifiers, weighting agents, texture modifiers (thickening agents and gelling agents), ripening inhibitors, antioxidants and chelating agents, on the physicochemical stability of nanoemulsions were discussed. Finally, the applications of nanoemulsions for the delivery of functional ingredients, including bioactive lipids, essential oil, flavor compounds, vitamins, phenolic compounds and carotenoids, were summarized. This review can provide some reference for the selection of preparation methods and stabilizers that will improve performance in nanoemulsion-based products and expand their usage.https://doi.org/10.3390/molecules2423424

    Content Determination of Active Component in Huangqi Yinyanghuo Group and Its Effects on hTERT and Bcl-2 Protein in Osteosarcoma

    No full text
    To screen the optimal extraction process and content determination of active component of Huangqi Yinyanghuo group (HYG) and to study the effects of HYG on human telomerase reverse transcriptase (hTERT) and Bcl-2 protein in osteosarcoma (HOS) cells, providing the theoretical basis for clinical application of HYG in treatment of osteosarcoma, orthogonal design table L9(43) was used to design the extraction process of HYG, and icariin was taken as the investigation index to optimize the extraction process of HYG. 0.125, 0.25, 0.5, 1, 2, 4, and 8 μmol/L HYG were taken to act separately on logarithmic growth phase osteosarcoma HOS cells, CCK-8 assay was used to determine cell viability, and immunohistochemical SP assay was used to determine the expression of hTERT and Bcl-2 protein. Apoptosis rate was positively correlated with the dose of HYG, and the expressions of hTERT and Bcl-2 protein were significantly decreased with the prolonged duration of action. Under the effect of HYG, dose was negatively correlated with osteosarcoma cell survival fraction; osteosarcoma cell survival fraction was positively correlated with hTERT and Bcl-2 protein; duration of action was negatively correlated with hTERT and Bcl-2 protein; and hTERT and Bcl-2 protein were in a synchronous relationship

    High-<i>κ</i> van der Waals Oxide MoO<sub>3</sub> as Efficient Gate Dielectric for MoS<sub>2</sub> Field-Effect Transistors

    No full text
    Two-dimensional van der Waals crystals (2D vdW) are recognized as one of the potential materials to solve the physical limits caused by size scaling. Here, vdW metal oxide MoO3 is applied with the gate dielectric in a 2D field-effect transistor (FET). Due to its high dielectric constant and the good response of MoS2 to visible light, we obtained a field effect transistor for photodetection. In general, the device exhibits a threshold voltage near 0 V, Ion/Ioff ratio of 105, electron mobility about 85 cm2 V−1 s−1 and a good response to visible light, the responsivity is near 5 A/W at low laser power, which shows that MoO3 is a potential material as gate dielectric

    Venetoclax plus cyclophosphamide and cytarabine as induction regimen for adult acute myeloid leukemia

    Get PDF
    BackgroundThe efficacy of induction chemotherapy (IC) for acute myeloid leukemia (AML) has improved significantly with the application of targeting drugs. Our previous study showed that a 4-day IC regimen of cyclophosphamide (CTX) and Ara-C [CA (4 + 3)] achieved similar complete remission (CR) rate (80%) compared with the traditional 7-day regimen, and the survival rate appeared to be better.MethodsIn this pilot study, we further shortened the CA regimen to 3 days, added low-dose venetoclax (VEN, 200 mg/day) (VCA), and reported the efficacy and safety here.ResultsTwenty-five newly diagnosed adult AML patients were enrolled in this study and evaluated for the remission rate after one cycle of the VCA regimen. The CR/Cri was 92%, and all these patients had undetectable minimal residual disease (MRD−). The estimated overall survival at 12 months was 79.3%. The median time for both platelet recovery and absolute neutrophil count recovery was 16 days, faster than that of traditional IC. Compared with the previous CA (4 + 3) regimen, a higher CR rate (92% vs. 80%, P &lt; 0.01) and a deeper degree of remission (CRMRD− rate, 92% vs. 45%, P &lt; 0.01) were found in the VCA group.ConclusionsThis study showed that the 3-day CTX and Ara-C regimen is highly effective in newly diagnosed AML patients, and the addition of VEN to the CA regimen achieves higher and deeper one-course remission

    Newly Generated Ca-Feldspar during Sintering Processes Enhances the Mechanical Strength of Coal Gangue-Based Insulation Bricks

    No full text
    Coal gangue is a solid waste with low carbon content discharged during the course of the coal mining process. The resource utilization of coal gangue could solve environmental problems caused by its excessive production, such as soil contamination and land occupation. This study proposed to produce high-strength thermal insulation bricks using coal gangue as the primary material and three other mineral powders as auxiliary materials, including K-feldspar, CaCO3 and fly ash. A systematic analysis was conducted to explore the optimum raw material addition ratio and optimum sintering temperature; then, the intrinsic structure of thermal insulation bricks and their sintering formation mechanisms were revealed. The results showed that the optimal ratios of coal gangue, K-feldspar, CaCO3 and fly ash were 65 wt%, 15 wt%, 10 wt% and 10 wt%, respectively; the compressive strength of the thermal insulation brick produced under this ratio was 22.5 MPa; thermal conductivity was 0.39 W m−1 k−1. During sintering processes, mineral powders sufficiently fused to form a skeleton, and the CO2 derived from CaCO3 formed pores. The optimum sintering temperature was 1150 °C, because at this temperature, K-feldspar had the best effect in promoting the conversion of CaCO3 to Ca-feldspar. The high level of the relative crystallinity of Ca-feldspar (about 76.0%) helped raise the Si–O network’s polymerization degree (NBO/T = 1.24), finally raising the compressive strength of thermal insulation bricks. The innovative method of using coal gangue to make thermal insulation bricks not only solved the environmental pollution caused by coal gangue but also provided excellent construction materials with high practical application value

    Macrophage-Derived Immunoglobulin M Inhibits Inflammatory Responses via Modulating Endoplasmic Reticulum Stress

    No full text
    Immunoglobulin (Ig), a characteristic marker of B cells, is a multifunctional evolutionary conserved antibody critical for maintaining tissue homeostasis and developing fully protective humoral responses to pathogens. Increasing evidence revealed that Ig is widely expressed in non-immune cells; moreover, Ig produced by different lineages cells plays different biological roles. Recently, it has been reported that monocytes or macrophages also express Ig. However, its function remains unclear. In this study, we further identified that Ig, especially Ig mu heavy chain (IgM), was mainly expressed in mice macrophages. We also analyzed the IgM repertoire characteristic in macrophages and found that the VHDJH rearrangements of macrophage-derived IgM showed a restricted and conservative VHDJH pattern, which differed from the diverse VHDJH rearrangement pattern of the B cell-expressed IgM in an individual. Functional investigation showed that IgM knockdown significantly promoted macrophage migration and FAK/Src-Akt axis activation. Furthermore, some inflammatory cytokines such as MCP1 and IL-6 increased after IgM knockdown under LPS stimulation. A mechanism study revealed that the IgM interacted with binding immunoglobulin protein (Bip) and inhibited inflammatory response and unfolded protein response (UPR) activation in macrophages. Our data elucidate a previously unknown function of IgM in macrophages that explains its ability to act as a novel regulator of Bip to participate in endoplasmic reticulum stress and further regulate the inflammatory response

    Free-Space Communication Turbulence Compensation by Optical Phase Conjugation

    No full text
    corecore